Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 296-324

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of equiconvergence of spectral decompositions corresponding to the systems of root functions of two one-dimensional Dirac operators $\mathcal L_{P,U}$ and $\mathcal L_{0,U}$ with potential $P$ summable on a finite interval and Birkhoff-regular boundary conditions is analyzed. It is proved that in the case of $P\in L_\varkappa[0,\pi]$, $\varkappa\in(1,\infty]$, equiconvergence holds for every function $\mathbf f\in L_\mu[0,\pi]$, $\mu\in[1,\infty]$, in the norm of the space $L_\nu[0,\pi]$, $\nu\in[1,\infty]$, if the indices $\varkappa,\mu$, and $\nu$ satisfy the inequality $1/\varkappa+1/\mu-1/\nu\le1$ (except for the case when $\varkappa=\nu=\infty$ and $\mu=1$). In particular, in the case of a square summable potential, the uniform equiconvergence on the interval $[0,\pi]$ is proved for an arbitrary function $\mathbf f\in L_2[0,\pi]$.
@article{TM_2016_293_a19,
     author = {I. V. Sadovnichaya},
     title = {Equiconvergence of spectral decompositions for the {Dirac} system with potential in {Lebesgue} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {296--324},
     publisher = {mathdoc},
     volume = {293},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a19/}
}
TY  - JOUR
AU  - I. V. Sadovnichaya
TI  - Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 296
EP  - 324
VL  - 293
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2016_293_a19/
LA  - ru
ID  - TM_2016_293_a19
ER  - 
%0 Journal Article
%A I. V. Sadovnichaya
%T Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 296-324
%V 293
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2016_293_a19/
%G ru
%F TM_2016_293_a19
I. V. Sadovnichaya. Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 296-324. http://geodesic.mathdoc.fr/item/TM_2016_293_a19/