Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_293_a19, author = {I. V. Sadovnichaya}, title = {Equiconvergence of spectral decompositions for the {Dirac} system with potential in {Lebesgue} spaces}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {296--324}, publisher = {mathdoc}, volume = {293}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2016_293_a19/} }
TY - JOUR AU - I. V. Sadovnichaya TI - Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2016 SP - 296 EP - 324 VL - 293 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2016_293_a19/ LA - ru ID - TM_2016_293_a19 ER -
%0 Journal Article %A I. V. Sadovnichaya %T Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2016 %P 296-324 %V 293 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2016_293_a19/ %G ru %F TM_2016_293_a19
I. V. Sadovnichaya. Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, approximation theory, and related problems of mathematical analysis, Tome 293 (2016), pp. 296-324. http://geodesic.mathdoc.fr/item/TM_2016_293_a19/