Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2016_292_a6, author = {Robert M. Guralnick}, title = {Conjugacy classes of derangements in finite transitive groups}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {118--123}, publisher = {mathdoc}, volume = {292}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2016_292_a6/} }
Robert M. Guralnick. Conjugacy classes of derangements in finite transitive groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 118-123. http://geodesic.mathdoc.fr/item/TM_2016_292_a6/
[1] Boston N., Dabrowski W., Foguel T., Gies P.J., Leavitt J., Ose D.T., Jackson D.A., “The proportion of fixed-point-free elements of a transitive permutation group”, Commun. Algebra, 21:9 (1993), 3259–3275 | DOI | MR | Zbl
[2] Burness T.C., Tong-Viet H.P., “Derangements in primitive permutation groups, with an application to character theory”, Q. J. Math., 66:1 (2015), 63–96, arXiv: 1403.7666 [math.GR] | DOI | MR | Zbl
[3] Cameron P.J., Cohen A.M., “On the number of fixed point free elements in a permutation group”, Discrete Math., 106/107 (1992), 135–138 | DOI | MR | Zbl
[4] Diaconis P., Fulman J., Guralnick R., “On fixed points of permutations”, J. Algebr. Comb., 28 (2008), 189–218 | DOI | MR | Zbl
[5] Erdős P., Szalay M., “On some problems of J. Denes and P. Turán”, Studies in pure mathematics, To the memory of Paul Turán, Birkhäuser, Basel, 1983, 187–212 | MR
[6] Fein B., Kantor W.M., Schacher M., “Relative Brauer groups. II”, J. reine angew. Math., 328 (1981), 39–57 | MR | Zbl
[7] Fried M.D., Guralnick R., Saxl J., “Schur covers and Carlitz's conjecture”, Israel J. Math., 82 (1993), 157–225 | DOI | MR | Zbl
[8] Fulman J., Guralnick R., “Derangements in simple and primitive groups”, Groups, combinatorics and geometry, Proc. Symp., Durham, 2001, World Sci., River Edge, NJ, 2003, 99–121 | DOI | MR | Zbl
[9] Fulman J., Guralnick R., “Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements”, Trans. Amer. Math. Soc., 364:6 (2012), 3023–3070 | DOI | MR | Zbl
[10] Fulman J., Guralnick R., “Derangements in subspace actions of finite classical groups”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1303.5480 [math.GR] | MR
[11] Fulman J., Guralnick R., Derangements in finite classical groups for actions related to extension field and imprimitive subgroups and the solution of the Boston–Shalev conjecture, E-print, 2015, arXiv: 1508.00039 [math.GR]
[12] Guralnick R.M., “Zeroes of permutation characters with applications to prime splitting and Brauer groups”, J. Algebra, 131:1 (1990), 294–302 | DOI | MR | Zbl
[13] Guralnick R., Malle G., “Simple groups admit Beauville structures”, J. London Math. Soc. Ser. 2, 85:3 (2012), 694–721 | DOI | MR | Zbl
[14] Guralnick R.M., Müller P., Saxl J., The rational function analogue of a question of Schur and exceptionality of permutation representations, Mem. AMS, 162, Amer. Math. Soc., Providence, RI, 2003 | MR
[15] Guralnick R., Wan D., “Bounds for fixed point free elements in a transitive group and applications to curves over finite fields”, Isr. J. Math., 101 (1997), 255–287 | DOI | MR | Zbl
[16] Serre J.-P., “On a theorem of Jordan”, Bull. Amer. Math. Soc., 40 (2003), 429–440 | DOI | MR | Zbl