Local nilpotency of the McCrimmon radical of a Jordan system
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the fact that absolute zero divisors in Jordan pairs become Lie sandwiches of the corresponding Tits–Kantor–Koecher Lie algebras, we prove local nilpotency of the McCrimmon radical of a Jordan system (algebra, triple system, or pair) over an arbitrary ring of scalars. As an application, we show that simple Jordan systems are always nondegenerate.
@article{TM_2016_292_a0,
     author = {Jos\'e A. Anquela and Teresa Cort\'es and Efim Zelmanov},
     title = {Local nilpotency of the {McCrimmon} radical of a {Jordan} system},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--15},
     year = {2016},
     volume = {292},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2016_292_a0/}
}
TY  - JOUR
AU  - José A. Anquela
AU  - Teresa Cortés
AU  - Efim Zelmanov
TI  - Local nilpotency of the McCrimmon radical of a Jordan system
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2016
SP  - 7
EP  - 15
VL  - 292
UR  - http://geodesic.mathdoc.fr/item/TM_2016_292_a0/
LA  - en
ID  - TM_2016_292_a0
ER  - 
%0 Journal Article
%A José A. Anquela
%A Teresa Cortés
%A Efim Zelmanov
%T Local nilpotency of the McCrimmon radical of a Jordan system
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2016
%P 7-15
%V 292
%U http://geodesic.mathdoc.fr/item/TM_2016_292_a0/
%G en
%F TM_2016_292_a0
José A. Anquela; Teresa Cortés; Efim Zelmanov. Local nilpotency of the McCrimmon radical of a Jordan system. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, geometry, and number theory, Tome 292 (2016), pp. 7-15. http://geodesic.mathdoc.fr/item/TM_2016_292_a0/

[1] Anquela J.A., Cortés T., “Local and subquotient inheritance of simplicity in Jordan systems”, J. Algebra, 240 (2001), 680–704 | DOI | MR | Zbl

[2] Chanyshev A.D., “Regular words and a theorem on sandwich algebras”, Moscow Univ. Math. Bull., 45:5 (1990), 68–69 | MR | Zbl

[3] Humphreys J.E., Introduction to Lie algebras and representation theory, Grad. Texts Math., 9, Springer, New York, 1972 | DOI | MR | Zbl

[4] Jacobson N., Structure theory of Jordan algebras, Univ. Arkansas Lect. Notes Math., 5, University of Arkansas, Fayetteville, 1981 | MR | Zbl

[5] Kostrikin A., Around Burnside, Ergeb. Math. Grenzgeb. 3. Folge, 20, Springer, Berlin, 1990 | MR | Zbl

[6] Lewand R.E., McCrimmon K.M., “Macdonald's theorem for quadratic Jordan algebras”, Pac. J. Math., 35 (1970), 681–707 | DOI | MR

[7] Loos O., Jordan pairs, Lect. Notes Math., 460, Springer, Berlin, 1975 | MR | Zbl

[8] Martínez C., Zelmanov E., “Representation theory of Jordan superalgebras. I”, Trans. Amer. Math. Soc., 362 (2010), 815–846 | MR | Zbl

[9] Martínez C., Zelmanov E., “Irreducible representations of the exceptional Cheng–Kac superalgebra”, Trans. Amer. Math. Soc., 366 (2014), 5853–5876 | DOI | MR | Zbl

[10] McCrimmon K., “Solvability and nilpotence for quadratic Jordan algebras”, Scripta math., 29 (1973), 467–483 | MR | Zbl

[11] McCrimmon K., “Amitsur shrinkage of Jordan radicals”, Commun. Algebra, 12 (1984), 777–826 | DOI | MR | Zbl

[12] McCrimmon K., A taste of Jordan algebras, Universitext, Springer, New York, 2004 | MR | Zbl

[13] McCrimmon K., Zel'manov E., “The structure of strongly prime quadratic Jordan algebras”, Adv. Math., 69 (1988), 133–222 | DOI | MR | Zbl

[14] Meyberg K., Lectures on algebras and triple systems, Univ. Virginia, Charlottesville, 1972 | MR

[15] Zel'manov E.I., “Absolute zero divisors in Jordan pairs and Lie algebras”, Math. USSR, Sb., 40 (1981), 549–565 | DOI | MR | Zbl | Zbl

[16] Zel'manov E.I., “Absolute zero-divisors and algebraic Jordan algebras”, Sib. Math. J., 23 (1982), 841–854 | DOI | MR | Zbl

[17] Zel'manov E.I., “Prime Jordan algebras. II”, Sib. Math. J., 24 (1983), 73–85 | DOI | MR | Zbl

[18] Zel'manov E.I., “Primary Jordan triple systems. III”, Sib. Math. J., 26 (1985), 55–64 | DOI | MR | Zbl

[19] Zelmanov E., Nil rings and periodic groups, KMS Lect. Notes Math., Korean Math. Soc., Seoul, 1992 | MR | Zbl

[20] Zel'manov E.I., Kostrikin A.I., “A theorem on sandwich algebras”, Proc. Steklov Inst. Math., 183 (1991), 121–126 | MR | Zbl

[21] Zhevlakov K.A., Slin'ko A.M., Shestakov I.P., Shirshov A.I., Rings that are nearly associative, Acad. Press, New York, 1982 | MR | Zbl