Rigorous results of phase transition theory in lattice boson models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 335-343.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quantum systems of particles obeying Bose statistics and moving in $d$-dimensional lattices are studied. The original Bose–Hubbard Hamiltonian is considered, together with model systems related to this Hamiltonian: the Bose–Hubbard model with exchange interaction of infinite radius and the Bose–Hubbard model with infinite interaction potential. Rigorous results concerning the proof of the existence of Bose condensation and a phase transition to the Mott insulator state in these systems are presented.
@article{TM_2015_290_a27,
     author = {D. P. Sankovich},
     title = {Rigorous results of phase transition theory in lattice boson models},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {335--343},
     publisher = {mathdoc},
     volume = {290},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_290_a27/}
}
TY  - JOUR
AU  - D. P. Sankovich
TI  - Rigorous results of phase transition theory in lattice boson models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 335
EP  - 343
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_290_a27/
LA  - ru
ID  - TM_2015_290_a27
ER  - 
%0 Journal Article
%A D. P. Sankovich
%T Rigorous results of phase transition theory in lattice boson models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 335-343
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_290_a27/
%G ru
%F TM_2015_290_a27
D. P. Sankovich. Rigorous results of phase transition theory in lattice boson models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, mechanics, and mathematical physics, Tome 290 (2015), pp. 335-343. http://geodesic.mathdoc.fr/item/TM_2015_290_a27/

[1] Ruelle D., Statistical mechanics: Rigorous results, W.A. Benjamin, New York, 1969 | MR | Zbl

[2] Simon B., The $P(\varphi )_2$ Euclidean (quantum) field theory, Princeton Univ. Press, Princeton, NJ, 1974 | MR

[3] Jaksch D., Bruder C., Cirac J.I., Gardiner C.W., Zoller P., “Cold bosonic atoms in optical lattices”, Phys. Rev. Lett., 81 (1998), 3108–3111 | DOI

[4] Greiner M., Mandel O., Esslinger T., Hänsch T.W., Bloch I., “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms”, Nature, 415 (2002), 39–44 | DOI

[5] Jaksch D., Zoller P., “The cold atom Hubbard toolbox”, Ann. Phys., 315 (2005), 52–79 | DOI | Zbl

[6] Hubbard J., “Electron correlations in narrow energy bands”, Proc. R. Soc. London A, 276 (1963), 238–257 | DOI

[7] Matsubara T., Matsuda H., “A lattice model of liquid helium. I”, Prog. Theor. Phys., 16 (1956), 569–582 | DOI | Zbl

[8] Gersch H.A., Knollman G.C., “Quantum cell model for bosons”, Phys. Rev., 129 (1963), 959–967 | DOI | Zbl

[9] Fisher M.P.A., Weichman P.B., Grinstein G., Fisher D.S., “Boson localization and the superfluid–insulator transition”, Phys. Rev. B, 40 (1989), 546–570 | DOI

[10] Zwerger W., “Mott–Hubbard transition of cold atoms in optical lattices”, J. Optics B, 5:2 (2003), S9–S16 | DOI

[11] Bru J.-B., Dorlas T.C., “Exact solution of the infinite-range-hopping Bose–Hubbard model”, J. Stat. Phys., 113 (2003), 177–196 | DOI | MR | Zbl

[12] Bogolubov N.N., Jr., A method for studing model Hamiltonians: A minimax principle for problems in statistical physics, Pergamon, Oxford, 1972

[13] Ginibre J., “On the asymptotic exactness of the Bogoliubov approximation for many boson systems”, Commun. Math. Phys., 8 (1968), 26–51 | DOI | MR | Zbl

[14] Dyson F.J., Lieb E.H., Simon B., “Phase transitions in quantum spin systems with isotropic and nonisotropic interactions”, J. Stat. Phys., 18 (1978), 335–383 | DOI | MR

[15] Kennedy T., Lieb E.H., Shastry B.S., “The XY model has long-range order for all spins and all dimensions greater than one”, Phys. Rev. Lett., 61 (1988), 2582–2584 | DOI

[16] Fernández R., Fröhlich J., Ueltschi D., “Mott transition in lattice boson models”, Commun. Math. Phys., 266 (2006), 777–795 | DOI | MR | Zbl

[17] Aizenman M., Lieb E.H., Seiringer R., Solovej J.P., Yngvason J., “Bose–Einstein quantum phase transition in an optical lattice model”, Phys. Rev. A, 70 (2004), 023612 | DOI

[18] Kubo R., “Statistical-mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12 (1957), 570–586 | DOI | MR

[19] Bogoljubow N.N., “Quasimittelwerte in Problemen der statistischen Mechanik. II”, Phys. Abh. Sowjetunion, 6:3 (1962), 229–284

[20] Naudts J., Verbeure A., Weder R., “Linear response theory and the KMS condition”, Commun. Math. Phys., 44 (1975), 87–99 | DOI | MR | Zbl

[21] Roepstorff G., “Bounds for a Bose condensate in dimensions $\nu \geq 3$”, J. Stat. Phys., 18 (1978), 191–206 | DOI | MR

[22] Haag R., Hugenholtz N.M., Winnink M., “On the equilibrium states in quantum statistical mechanics”, Commun. Math. Phys., 5 (1967), 215–236 | DOI | MR | Zbl

[23] Kastler D., Pool J.C.T., Poulsen E.T., “Quasi-unitary algebras attached to temperature states in statistical mechanics: A comment on the work of Haag, Hugenholtz and Winnink”, Commun. Math. Phys., 12 (1969), 175–192 | DOI | MR | Zbl

[24] Falk H., Bruch L.W., “Susceptibility and fluctuation”, Phys. Rev., 180 (1969), 442–444 | DOI

[25] Sankovich D.P., “Local Gaussian domination and Bose condensation in lattice boson model”, Phys. Lett. A, 377 (2013), 2905–2908 | DOI | Zbl

[26] Sankovich D.P., “Gaussova dominantnost i fazovye perekhody v sistemakh s nepreryvnoi simmetriei”, TMF, 79:3 (1989), 460–472 | MR