Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2015_288_a19, author = {Marjorie Senechal}, title = {Delaunay sets and condensed matter: {The} dialogue continues}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {281--286}, publisher = {mathdoc}, volume = {288}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2015_288_a19/} }
Marjorie Senechal. Delaunay sets and condensed matter: The dialogue continues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 281-286. http://geodesic.mathdoc.fr/item/TM_2015_288_a19/
[1] Delone B., Padurov N., Aleksandrov A., Matematicheskie osnovy strukturnogo analiza kristallov i opredelenie osnovnogo parallelepipeda povtoryaemosti pri pomoschi rentgenovskikh luchei, ONTI–GTTI, L.; M., 1934
[2] Delone B.N., Dolbilin N.P., Shtogrin M.I., Galiulin R.V., “A local criterion for regularity of a system of points”, Sov. Math. Dokl., 17:2 (1976), 319–322 | MR | Zbl
[3] Dolbilin N.P., Lagarias J.C., Senechal M., “Multiregular point systems”, Discrete Comput. Geom., 20:4 (1998), 477–498 | DOI | MR | Zbl
[4] Dolbilin N., Schulte E., “The local theorem for monotypic tilings”, Electron. J. Comb., 11:2 (2004), Pap. R7 | MR
[5] Shechtman D., Blech I., Gratias D., Cahn J.W., “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett., 53:20 (1984), 1951–1954 | DOI
[6] http://reference.iucr.org/dictionary/Crystal
[7] Bak P., “Icosahedral crystals: Where are the atoms?”, Phys. Rev. Lett., 56:8 (1986), 861–864 | DOI | MR
[8] de Bruijn N.G., “Algebraic theory of Penrose's non-periodic tilings of the plane. I, II”, Indag. Math., 43 (1981), 39–52 | DOI | MR | Zbl
[9] Senechal M., Quasicrystals and geometry, Cambridge Univ. Press, Cambridge, 1996
[10] Lagarias J.C., “Geometric models for quasicrystals. I: Delone sets of finite type”, Discrete. Comput. Geom., 21:2 (1999), 161–191 | DOI | MR | Zbl
[11] Strungaru N., “Almost periodic measures and long-range order in Meyer sets”, Discrete Comput. Geom., 33:3 (2005), 483–505 | DOI | MR | Zbl
[12] Takakura H., Gómez C.P., Yamamoto A., De Boissieu M., Tsai A.P., “Atomic structure of the binary icosahedral Yb–Cd quasicrystal”, Nature Mater., 6 (2007), 58–63 | DOI
[13] Senechal M., Taylor J.E., “Quasicrystals: The view from Stockholm”, Math. Intell., 35:2 (2013), 1–9 | DOI | MR | Zbl
[14] Keys A.S., Glotzer S.C., “How do quasicrystals grow?”, Phys. Rev. Lett., 99:23 (2007), 235503 | DOI
[15] Engel M., Damasceno P.F., Phillips C.L., Glotzer S.C., “Computational self-assembly of a one-component icosahedral quasicrystal”, Nature Mater., 14 (2015), 109–116 | DOI
[16] Harriss E., Frettlöh D., Tilings encyclopedia http://tilings.math.uni-bielefeld.de/
[17] Baake M., Grimm U., Aperiodic order. V. 1: A mathematical invitation, Cambridge Univ. Press, Cambridge, 2013 | MR
[18] Mackay A.L., “A dense non-crystallographic packing of equal spheres”, Acta crystallogr., 15 (1962), 916–918 | DOI
[19] Extended icosahedral structures, Aperiodicity and Order, 3, eds. M.V. Jarić, D. Gratias, Acad. Press, Boston, MA, 1989 | MR
[20] Gratias D., Puyraimond F., Quiquandon M., Katz A., “Atomic clusters in icosahedral $F$-type quasicrystals”, Phys. Rev. B., 63:2 (2001), 024202 | DOI
[21] Kuhn T.S., The structure of scientific revolutions, Univ. Chicago Press, Chicago, 1962
[22] Megaw H.D., “The domain of crystallography”, Historical atlas of crystallography, eds. J. Lima-de-Faria, Kluwer, Dordrecht, 1990, 137–140 | MR