Delaunay sets and condensed matter: The dialogue continues
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 281-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

Since the discovery of quasicrystals began to percolate through the scientific community, thirty years ago, Delaunay sets have been the tool of choice for describing their structures geometrically. These descriptions have gradually evolved from tiling vertex models to random cluster models, as the structures of real and simulated quasicrystals have been clarified experimentally. In this paper I outline these developments and explain why this productive dialogue between mathematicians and materials scientists will continue.
@article{TM_2015_288_a19,
     author = {Marjorie Senechal},
     title = {Delaunay sets and condensed matter: {The} dialogue continues},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {281--286},
     publisher = {mathdoc},
     volume = {288},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2015_288_a19/}
}
TY  - JOUR
AU  - Marjorie Senechal
TI  - Delaunay sets and condensed matter: The dialogue continues
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2015
SP  - 281
EP  - 286
VL  - 288
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2015_288_a19/
LA  - en
ID  - TM_2015_288_a19
ER  - 
%0 Journal Article
%A Marjorie Senechal
%T Delaunay sets and condensed matter: The dialogue continues
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2015
%P 281-286
%V 288
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2015_288_a19/
%G en
%F TM_2015_288_a19
Marjorie Senechal. Delaunay sets and condensed matter: The dialogue continues. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry, topology, and applications, Tome 288 (2015), pp. 281-286. http://geodesic.mathdoc.fr/item/TM_2015_288_a19/

[1] Delone B., Padurov N., Aleksandrov A., Matematicheskie osnovy strukturnogo analiza kristallov i opredelenie osnovnogo parallelepipeda povtoryaemosti pri pomoschi rentgenovskikh luchei, ONTI–GTTI, L.; M., 1934

[2] Delone B.N., Dolbilin N.P., Shtogrin M.I., Galiulin R.V., “A local criterion for regularity of a system of points”, Sov. Math. Dokl., 17:2 (1976), 319–322 | MR | Zbl

[3] Dolbilin N.P., Lagarias J.C., Senechal M., “Multiregular point systems”, Discrete Comput. Geom., 20:4 (1998), 477–498 | DOI | MR | Zbl

[4] Dolbilin N., Schulte E., “The local theorem for monotypic tilings”, Electron. J. Comb., 11:2 (2004), Pap. R7 | MR

[5] Shechtman D., Blech I., Gratias D., Cahn J.W., “Metallic phase with long-range orientational order and no translational symmetry”, Phys. Rev. Lett., 53:20 (1984), 1951–1954 | DOI

[6] http://reference.iucr.org/dictionary/Crystal

[7] Bak P., “Icosahedral crystals: Where are the atoms?”, Phys. Rev. Lett., 56:8 (1986), 861–864 | DOI | MR

[8] de Bruijn N.G., “Algebraic theory of Penrose's non-periodic tilings of the plane. I, II”, Indag. Math., 43 (1981), 39–52 | DOI | MR | Zbl

[9] Senechal M., Quasicrystals and geometry, Cambridge Univ. Press, Cambridge, 1996

[10] Lagarias J.C., “Geometric models for quasicrystals. I: Delone sets of finite type”, Discrete. Comput. Geom., 21:2 (1999), 161–191 | DOI | MR | Zbl

[11] Strungaru N., “Almost periodic measures and long-range order in Meyer sets”, Discrete Comput. Geom., 33:3 (2005), 483–505 | DOI | MR | Zbl

[12] Takakura H., Gómez C.P., Yamamoto A., De Boissieu M., Tsai A.P., “Atomic structure of the binary icosahedral Yb–Cd quasicrystal”, Nature Mater., 6 (2007), 58–63 | DOI

[13] Senechal M., Taylor J.E., “Quasicrystals: The view from Stockholm”, Math. Intell., 35:2 (2013), 1–9 | DOI | MR | Zbl

[14] Keys A.S., Glotzer S.C., “How do quasicrystals grow?”, Phys. Rev. Lett., 99:23 (2007), 235503 | DOI

[15] Engel M., Damasceno P.F., Phillips C.L., Glotzer S.C., “Computational self-assembly of a one-component icosahedral quasicrystal”, Nature Mater., 14 (2015), 109–116 | DOI

[16] Harriss E., Frettlöh D., Tilings encyclopedia http://tilings.math.uni-bielefeld.de/

[17] Baake M., Grimm U., Aperiodic order. V. 1: A mathematical invitation, Cambridge Univ. Press, Cambridge, 2013 | MR

[18] Mackay A.L., “A dense non-crystallographic packing of equal spheres”, Acta crystallogr., 15 (1962), 916–918 | DOI

[19] Extended icosahedral structures, Aperiodicity and Order, 3, eds. M.V. Jarić, D. Gratias, Acad. Press, Boston, MA, 1989 | MR

[20] Gratias D., Puyraimond F., Quiquandon M., Katz A., “Atomic clusters in icosahedral $F$-type quasicrystals”, Phys. Rev. B., 63:2 (2001), 024202 | DOI

[21] Kuhn T.S., The structure of scientific revolutions, Univ. Chicago Press, Chicago, 1962

[22] Megaw H.D., “The domain of crystallography”, Historical atlas of crystallography, eds. J. Lima-de-Faria, Kluwer, Dordrecht, 1990, 137–140 | MR