Sharp maximal inequalities for stochastic processes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 162-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is a survey of existing methods and results in the problem of estimating the mathematical expectation of the maximum of a random process up to an arbitrary Markov time. Both continuous-time (standard Brownian motion, skew Brownian motion, Bessel processes) and discrete-time (symmetric Bernoulli random walk and its modulus) processes are considered.
@article{TM_2014_287_a9,
     author = {Ya. A. Lyulko and A. N. Shiryaev},
     title = {Sharp maximal inequalities for stochastic processes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {162--181},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a9/}
}
TY  - JOUR
AU  - Ya. A. Lyulko
AU  - A. N. Shiryaev
TI  - Sharp maximal inequalities for stochastic processes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 162
EP  - 181
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_287_a9/
LA  - ru
ID  - TM_2014_287_a9
ER  - 
%0 Journal Article
%A Ya. A. Lyulko
%A A. N. Shiryaev
%T Sharp maximal inequalities for stochastic processes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 162-181
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_287_a9/
%G ru
%F TM_2014_287_a9
Ya. A. Lyulko; A. N. Shiryaev. Sharp maximal inequalities for stochastic processes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 162-181. http://geodesic.mathdoc.fr/item/TM_2014_287_a9/

[1] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR

[2] Dubins L.E., Shepp L.A., Shiryaev A.N., “Optimalnye pravila ostanovki i maksimalnye neravenstva dlya protsessov Besselya”, Teoriya veroyatn. i ee primen., 38:2 (1993), 288–330 | MR | Zbl

[3] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1965

[4] Lyulko Ya.A., “Tochnye neravenstva dlya maksimuma skoshennogo brounovskogo dvizheniya”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 2012, no. 4, 26–31 | MR | Zbl

[5] Mischenko A.S., “Diskretnyi protsess Besselya i ego svoistva”, Teoriya veroyatn. i ee primen., 50:4 (2005), 797–806 | DOI

[6] Burkholder D.L., Davis B.J., Gundy R.F., “Integral inequalities for convex functions of operators on martingales”, Proc. 6th Berkeley Symp. Math. Stat. Probab., V. 2 (Univ. California, 1970), Univ. Calif. Press, Berkeley, CA, 1972, 223–240 | MR | Zbl

[7] Burkholder D.L., Gundy R.F., “Extrapolation and interpolation of quasi-linear operators on martingales”, Acta math., 124 (1970), 249–304 | DOI | MR | Zbl

[8] Dubins L.E., Savage L.J., Inequalities for stochastic processes: How to gamble if you must, Dover, New York, 1976 | MR | Zbl

[9] Dubins L.E., Schwarz G., “A sharp inequality for sub-martingales and stopping times”, Colloque Paul Lévy sur les processus stochastiques 1987, Astérisque, 157–158, Soc. math. France, Paris, 1988, 129–145 | MR

[10] Fujita T., “A random walk analogue of Lévy's theorem”, Stud. sci. math. Hung., 45:2 (2008), 223–233 | MR | Zbl

[11] Graversen S.E., Peškir G., “On Wald-type optimal stopping for Brownian motion”, J. Appl. Probab., 34 (1997), 66–73 | DOI | MR | Zbl

[12] Graversen S.E., Peškir G., “On Doob's maximal inequality for Brownian motion”, Stoch. Processes Appl., 69 (1997), 111–125 | DOI | MR | Zbl

[13] Graversen S.E., Peškir G., “Maximal inequalities for Bessel processes”, J. Inequal. Appl., 2 (1998), 99–119 | MR | Zbl

[14] Graversen S.E., Peškir G., “Optimal stopping and maximal inequalities for geometric Brownian motion”, J. Appl. Probab., 35 (1998), 856–872 | DOI | MR | Zbl

[15] Graversen S.E., Peškir G., “Maximal inequalities for the Ornstein–Uhlenbeck process”, Proc. Amer. Math. Soc., 128:10 (2000), 3035–3041 | DOI | MR | Zbl

[16] Harrison J.M., Shepp L.A., “On skew Brownian motion”, Ann. Probab., 9:2 (1981), 309–313 | DOI | MR | Zbl

[17] Jacka S.D., “Optimal stopping and best constants for Doob-like inequalities. I: The case $p=1$”, Ann. Probab., 19:4 (1991), 1798–1821 | DOI | MR | Zbl

[18] Lejay A., “On the constructions of the skew Brownian motion”, Probab. Surv., 3 (2006), 413–466 | DOI | MR | Zbl

[19] McKean H.P., Jr., “The Bessel motion and a singular integral equation”, Mem. Coll. Sci. Univ. Kyoto. Ser. A: Math., 33:2 (1960), 317–322 | MR | Zbl

[20] Peškir G., “A change-of-variable formula with local time on curves”, J. Theor. Probab., 18:3 (2005), 499–535 | DOI | MR

[21] Peškir G., Shiryaev A.N., “Maximal inequalities for reflected Brownian motion with drift”, Theory Probab. Math. Stat., 63 (2001), 137–143 | MR

[22] Peškir G., Shiryaev A., Optimal stopping and free-boundary problems, Birkhäuser, Basel, 2006 | MR

[23] Revuz D., Yor M., Continuous martingales and Brownian motion, 3rd ed., Springer, Berlin, 1999 | MR | Zbl

[24] Walsh J.B., “A diffusion with a discontinuous local time”, Temps locaux. Exposés du séminaire J. Azema–M. Yor (1976–1977), Astérisque, 52–53, Soc. math. France, Paris, 1978, 37–45 | MR

[25] Wang G., “Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion”, Proc. Amer. Math. Soc., 112:2 (1991), 579–586 | DOI | MR | Zbl

[26] Zhitlukhin M.V., “A maximal inequality for skew Brownian motion”, Stat. Decis., 27 (2009), 261–280 | MR | Zbl