Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_287_a8, author = {Yury A. Kutoyants}, title = {Approximation of the solution of the backward stochastic differential equation. {Small} noise, large sample and high frequency cases}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {140--161}, publisher = {mathdoc}, volume = {287}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a8/} }
TY - JOUR AU - Yury A. Kutoyants TI - Approximation of the solution of the backward stochastic differential equation. Small noise, large sample and high frequency cases JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 140 EP - 161 VL - 287 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_287_a8/ LA - ru ID - TM_2014_287_a8 ER -
%0 Journal Article %A Yury A. Kutoyants %T Approximation of the solution of the backward stochastic differential equation. Small noise, large sample and high frequency cases %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 140-161 %V 287 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2014_287_a8/ %G ru %F TM_2014_287_a8
Yury A. Kutoyants. Approximation of the solution of the backward stochastic differential equation. Small noise, large sample and high frequency cases. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 140-161. http://geodesic.mathdoc.fr/item/TM_2014_287_a8/
[1] Bismut J.-M., “Conjugate convex functions in optimal stochastic control”, J. Math. Anal. Appl., 44 (1973), 384–404 | DOI | MR
[2] Dohnal G., “On estimating the diffusion coefficient”, J. Appl. Probab., 24:1 (1987), 105–114 | DOI | MR | Zbl
[3] Freidlin M.I., Wentzell A.D. Random perturbations of dynamical systems. 2nd ed. New York: Springer, 1998. | MR
[4] Genon-Catalot V., Jacod J., “On the estimation of the diffusion coefficient for multi-dimensional diffusion processes”, Ann. Inst. Henri Poincaré. Probab. Stat., 29:1 (1993), 119–151 | MR | Zbl
[5] El Karoui N., Peng S., Quenez M.C., “Backward stochastic differential equations in finance”, Math. Finance., 7:1 (1997), 1–71 | DOI | MR | Zbl
[6] Kamatani K., Uchida M. Hybrid multi-step estimators for stochastic differential equations based on sampled data // Stat. Inference Stoch. Processes. 2014. doi: 10.1007/s11203-014-9107-4.
[7] Kutoyants Yu., Identification of dynamical systems with small noise, Kluwer, Dordrecht, 1994 | MR | Zbl
[8] Kutoyants Yu.A., Statistical inference for ergodic diffusion processes, Springer, London, 2004 | MR | Zbl
[9] Kutoyants Yu.A., Zhou L., “On approximation of the backward stochastic differential equation”, J. Stat. Plann. Inference., 150 (2014), 111–123, arXiv: 1305.3728 [math.ST] | DOI | MR | Zbl
[10] Levanony D., Shwartz A., Zeitouni O., “Recursive identification in continuous-time stochastic processes”, Stoch. Processes Appl., 49:2 (1994), 245–275 | DOI | MR | Zbl
[11] Liptser R.S., Shiryaev A.N. Statistics of random processes. 2nd ed. Berlin: Springer, 2001. V. 2.
[12] Ma J., Yong J., Forward–backward stochastic differential equations and their applications, (Lect. Notes Math.; V. 1702)., 1702, Springer, Berlin, 1999 | MR | Zbl
[13] Pardoux E., Peng S.G., “Adapted solution of a backward stochastic differential equation”, Syst. Control Lett., 14:1 (1990), 55–61 | DOI | MR | Zbl
[14] Pardoux E., Peng S. Backward stochastic differential equations and quasilinear parabolic differential equations // Stochastic partial differential equations and their applications. Berlin: Springer, 1992. P. 200–217. (Lect. Notes Control Inf. Sci.; V. 176). | MR
[15] Sørensen M. Estimating functions for diffusion-type processes // Statistical methods for stochastic differential equations / Ed. by M. Kessler, A. Lindner, M. Sørensen. Boca Raton, FL: CRC Press, 2009. P. 1–107. | MR
[16] Zhou L. Problèmes statistiques pour des EDS et les EDS rétrogrades: PhD Thesis. Le Mans: Univ. Maine, 2013.