On the submartingale/supermartingale property of diffusions in natural scale
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 129-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. Kotani (2006) has characterised the martingale property of a one-dimensional diffusion in natural scale in terms of the classification of its boundaries. We complement this result by establishing a necessary and sufficient condition for a one-dimensional diffusion in natural scale to be a submartingale or a supermartingale. Furthermore, we study the asymptotic behaviour of the diffusion's expected state at time $t$ as $t\to\infty$. We illustrate our results by means of several examples.
@article{TM_2014_287_a7,
     author = {Alexander Gushchin and Mikhail Urusov and Mihail Zervos},
     title = {On the submartingale/supermartingale property of diffusions in natural scale},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a7/}
}
TY  - JOUR
AU  - Alexander Gushchin
AU  - Mikhail Urusov
AU  - Mihail Zervos
TI  - On the submartingale/supermartingale property of diffusions in natural scale
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 129
EP  - 139
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_287_a7/
LA  - en
ID  - TM_2014_287_a7
ER  - 
%0 Journal Article
%A Alexander Gushchin
%A Mikhail Urusov
%A Mihail Zervos
%T On the submartingale/supermartingale property of diffusions in natural scale
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 129-139
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_287_a7/
%G en
%F TM_2014_287_a7
Alexander Gushchin; Mikhail Urusov; Mihail Zervos. On the submartingale/supermartingale property of diffusions in natural scale. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 129-139. http://geodesic.mathdoc.fr/item/TM_2014_287_a7/

[1] Borodin A.N., Salminen P., Handbook of Brownian motion: Facts and formulae, Birkhäuser, Basel, 2002 | MR | Zbl

[2] Delbaen F., Shirakawa H., “No arbitrage condition for positive diffusion price processes”, Asia-Pac. Financ. Mark., 9:3–4 (2002), 159–168 | DOI | Zbl

[3] Itô K., McKean H.P., Jr., Diffusion processes and their sample paths, Springer, Berlin, 1996 | MR

[4] Karlin S., Taylor H.M., A second course in stochastic processes, Acad. Press, New York, 1981 | MR

[5] Kotani S., “On a condition that one-dimensional diffusion processes are martingales”, In memoriam Paul-André Meyer: Séminaire de probabilités XXXIX, Lect. Notes Math., 1874, Springer, Berlin, 2006, 149–156 | DOI | MR | Zbl

[6] Mijatović A., Urusov M., “Convergence of integral functionals of one-dimensional diffusions”, Electron. Commun. Probab., 17 (2012), 61 | DOI | MR | Zbl

[7] Revuz D., Yor M., Continuous martingales and Brownian motion, Springer, Berlin, 1994 | MR | Zbl

[8] Rogers L.C.G., Williams D., Diffusions, Markov processes and martingales. V. 2: Itô calculus, Cambridge Univ. Press, Cambridge, 2000 | MR