Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_287_a7, author = {Alexander Gushchin and Mikhail Urusov and Mihail Zervos}, title = {On the submartingale/supermartingale property of diffusions in natural scale}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {129--139}, publisher = {mathdoc}, volume = {287}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a7/} }
TY - JOUR AU - Alexander Gushchin AU - Mikhail Urusov AU - Mihail Zervos TI - On the submartingale/supermartingale property of diffusions in natural scale JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 129 EP - 139 VL - 287 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_287_a7/ LA - en ID - TM_2014_287_a7 ER -
%0 Journal Article %A Alexander Gushchin %A Mikhail Urusov %A Mihail Zervos %T On the submartingale/supermartingale property of diffusions in natural scale %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 129-139 %V 287 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2014_287_a7/ %G en %F TM_2014_287_a7
Alexander Gushchin; Mikhail Urusov; Mihail Zervos. On the submartingale/supermartingale property of diffusions in natural scale. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 129-139. http://geodesic.mathdoc.fr/item/TM_2014_287_a7/
[1] Borodin A.N., Salminen P., Handbook of Brownian motion: Facts and formulae, Birkhäuser, Basel, 2002 | MR | Zbl
[2] Delbaen F., Shirakawa H., “No arbitrage condition for positive diffusion price processes”, Asia-Pac. Financ. Mark., 9:3–4 (2002), 159–168 | DOI | Zbl
[3] Itô K., McKean H.P., Jr., Diffusion processes and their sample paths, Springer, Berlin, 1996 | MR
[4] Karlin S., Taylor H.M., A second course in stochastic processes, Acad. Press, New York, 1981 | MR
[5] Kotani S., “On a condition that one-dimensional diffusion processes are martingales”, In memoriam Paul-André Meyer: Séminaire de probabilités XXXIX, Lect. Notes Math., 1874, Springer, Berlin, 2006, 149–156 | DOI | MR | Zbl
[6] Mijatović A., Urusov M., “Convergence of integral functionals of one-dimensional diffusions”, Electron. Commun. Probab., 17 (2012), 61 | DOI | MR | Zbl
[7] Revuz D., Yor M., Continuous martingales and Brownian motion, Springer, Berlin, 1994 | MR | Zbl
[8] Rogers L.C.G., Williams D., Diffusions, Markov processes and martingales. V. 2: Itô calculus, Cambridge Univ. Press, Cambridge, 2000 | MR