On pathwise counterparts of Doob's maximal inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 125-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present pathwise counterparts of Doob's maximal inequalities (on the probability of exceeding a level) for submartingales and supermartingales.
@article{TM_2014_287_a6,
     author = {A. A. Gushchin},
     title = {On pathwise counterparts of {Doob's} maximal inequalities},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {125--128},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a6/}
}
TY  - JOUR
AU  - A. A. Gushchin
TI  - On pathwise counterparts of Doob's maximal inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 125
EP  - 128
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_287_a6/
LA  - ru
ID  - TM_2014_287_a6
ER  - 
%0 Journal Article
%A A. A. Gushchin
%T On pathwise counterparts of Doob's maximal inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 125-128
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_287_a6/
%G ru
%F TM_2014_287_a6
A. A. Gushchin. On pathwise counterparts of Doob's maximal inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 125-128. http://geodesic.mathdoc.fr/item/TM_2014_287_a6/

[1] Acciaio B., Beiglböck M., Penkner F., Schachermayer W., Temme J., “A trajectorial interpretation of Doob's martingale inequalities”, Ann. Appl. Probab., 23:4 (2013), 1494–1505 | DOI | MR | Zbl

[2] Beiglböck M., Nutz M., Martingale inequalities and deterministic counterparts, E-print, 2014, arXiv: 1401.4698 [math.PR]

[3] Beiglböck M., Siorpaes P., Pathwise versions of the Burkholder–Davis–Gundy inequality, E-print, 2013, arXiv: 1305.6188 [math.PR]

[4] Bouchard B., Nutz M., Arbitrage and duality in nondominated discrete-time models, E-print, 2013, arXiv: 1305.6008 [q-fin.GN]

[5] Cox A.M.G., Obłój J., On joint distributions of the maximum, minimum and terminal value of a continuous uniformly integrable martingale, E-print, 2014, arXiv: 1406.0885 [math.PR]

[6] Cox D.C., “Some sharp martingale inequalities related to Doob's inequality”, Inequalities in statistics and probability, IMS Lect. Notes–Monogr. Ser., 5, Inst. Math. Stat., Hayward, CA, 1984, 78–83 | DOI | MR

[7] Dub Dzh.L., Veroyatnostnye protsessy, Izd-vo inostr. lit., M., 1956 | MR

[8] Gilat D., “The best bound in the $L\log L$ inequality of Hardy and Littlewood and its martingale counterpart”, Proc. Amer. Math. Soc., 97:3 (1986), 429–436 | MR | Zbl

[9] Henry-Labordère P., Obłój J., Spoida P., Touzi N., The maximum maximum of a martingale with given $n$ marginals, E-print, 2014, arXiv: 1203.6877v3 [math.PR] | MR

[10] Hobson D., “The Skorokhod embedding problem and model-independent bounds for option prices”, Paris–Princeton lectures on mathematical finance 2010, Lect. Notes Math., 2003, Springer, Berlin, 2011, 267–318 | DOI | MR | Zbl

[11] Obłój J., Spoida P., Touzi N., Martingale inequalities for the maximum via pathwise arguments, E-print, 2014, arXiv: 1409.6255 [math.PR]

[12] Obłój J., Yor M., “On local martingale and its supremum: Harmonic functions and beyond”, From stochastic calculus to mathematical finance, eds. Yu. Kabanov, R. Liptser, J. Stoyanov, Springer, Berlin, 2006, 517–533 | MR | Zbl