New approach to the segmentation problem for time series of arbitrary nature
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 61-74
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of splitting time series of arbitrary nature (stochastic, deterministic, or mixed) into segments generated by the same mechanism. We introduce a new concept of $\in$-complexity of continuous functions and give a characterization of this quantity for Hölder continuous functions. On the basis of the $\in$-complexity parameters, we propose a new technique for the segmentation of time series that does not require any a priori knowledge of how these series were generated.
@article{TM_2014_287_a3,
     author = {B. S. Darhovsky and A. Piryatinska},
     title = {New approach to the segmentation problem for time series of arbitrary nature},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {61--74},
     year = {2014},
     volume = {287},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a3/}
}
TY  - JOUR
AU  - B. S. Darhovsky
AU  - A. Piryatinska
TI  - New approach to the segmentation problem for time series of arbitrary nature
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 61
EP  - 74
VL  - 287
UR  - http://geodesic.mathdoc.fr/item/TM_2014_287_a3/
LA  - ru
ID  - TM_2014_287_a3
ER  - 
%0 Journal Article
%A B. S. Darhovsky
%A A. Piryatinska
%T New approach to the segmentation problem for time series of arbitrary nature
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 61-74
%V 287
%U http://geodesic.mathdoc.fr/item/TM_2014_287_a3/
%G ru
%F TM_2014_287_a3
B. S. Darhovsky; A. Piryatinska. New approach to the segmentation problem for time series of arbitrary nature. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 61-74. http://geodesic.mathdoc.fr/item/TM_2014_287_a3/

[1] Khodadadi A., Asgharian M., Change-point problem and regression: An annotated bibliography, E-print. COBRA Preprint Ser., Paper 44, 2008 http://biostats.bepress.com/cobra/art44

[2] Shiryaev A.N., “O stokhasticheskikh modelyakh i optimalnykh metodakh v zadachakh skoreishego obnaruzheniya”, Teoriya veroyatn. i ee primen., 53:3 (2008), 417–436 | DOI | MR

[3] Shiryaev A.N., “Quickest detection problems: Fifty years later”, Sequential Anal., 29 (2010), 345–385 | DOI | MR | Zbl

[4] Brodsky B.E., Darkhovsky B.S., Non-parametric statistical diagnosis: Problems and methods, Kluwer, Dordrecht, 2000 | MR | Zbl

[5] Darkhovskii B.S., Kaplan A.Ya., Shishkin S.L., “O podkhode k otsenke slozhnosti krivykh (na primere elektroentsefalogrammy cheloveka)”, Avtomatika i telemekhanika, 2002, no. 3, 134–140

[6] Darkhovsky B., Piryatinska A., “Quickest detection of changes in the generating mechanism of a time series via the $\epsilon $-complexity of continuous functions”, Sequential Anal., 33 (2014), 231–250 | DOI | MR | Zbl

[7] Kolmogorov A.N., “Kombinatornye osnovaniya teorii informatsii i ischisleniya veroyatnostei”, UMN, 38:4 (1983), 27–36 | MR | Zbl

[8] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968 | MR | Zbl

[9] Darkhovsky B., Piryatinska A., “A new complexity-based algorithmic procedures for electroencephalogram (EEG) segmentation”, Signal processing in medicine and biology symposium (SPMB), 2012, IEEE, 2012, 1–5 | DOI