Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_287_a15, author = {Alexander G. Tartakovsky}, title = {Nearly optimal sequential tests of composite hypotheses revisited}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {279--299}, publisher = {mathdoc}, volume = {287}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a15/} }
TY - JOUR AU - Alexander G. Tartakovsky TI - Nearly optimal sequential tests of composite hypotheses revisited JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 279 EP - 299 VL - 287 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_287_a15/ LA - en ID - TM_2014_287_a15 ER -
Alexander G. Tartakovsky. Nearly optimal sequential tests of composite hypotheses revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 279-299. http://geodesic.mathdoc.fr/item/TM_2014_287_a15/
[1] Anderson T.W., “A modification of the sequential probability ratio test to reduce the sample size”, Ann. Math. Stat., 31:1 (1960), 165–197 | DOI | MR | Zbl
[2] Bechhofer R., “A note on the limiting relative efficiency of the Wald sequential probability ratio test”, J. Amer. Stat. Assoc., 55 (1960), 660–663 | DOI | MR | Zbl
[3] Chan H.P., Lai T.L., “Asymptotic approximations for error probabilities of sequential or fixed sample size tests in exponential families”, Ann. Stat., 28:6 (2000), 1638–1669 | DOI | MR | Zbl
[4] Dragalin V.P., Novikov A.A., “Asymptotic solution of the Kiefer–Weiss problem for processes with independent increments”, Theory Probab. Appl., 32 (1988), 617–627 | DOI | MR
[5] Dragalin V.P., Novikov A.A., “Adaptive sequential tests for composite hypotheses”, Obozr. prikl. i promyshl. matematiki, 6:2 (1999), 387–399 | MR | Zbl
[6] Dragalin V.P., Tartakovsky A.G., Veeravalli V.V., “Multihypothesis sequential probability ratio tests. I: Asymptotic optimality”, IEEE Trans. Inf. Theory, 45:7 (1999), 2448–2461 | DOI | MR | Zbl
[7] Huffman M.D., “An efficient approximate solution to the Kiefer–Weiss problem”, Ann. Stat., 11:1 (1983), 306–316 | DOI | MR | Zbl
[8] Kiefer J., Weiss L., “Properties of generalized sequential probability ratio tests”, Ann. Math. Stat., 28:1 (1957), 57–74 | DOI | MR | Zbl
[9] Lai T.L., “Asymptotic optimality of invariant sequential probability ratio tests”, Ann. Stat., 9:2 (1981), 318–333 | DOI | MR | Zbl
[10] Lai T.L., “Nearly optimal sequential tests of composite hypotheses”, Ann. Stat., 16:2 (1988), 856–886 | DOI | MR | Zbl
[11] Lai T.L., Zhang L., “A modification of Schwarz's sequential likelihood ratio tests in mulitvariate sequential analysis”, Sequential Anal., 13:2 (1994), 79–96 | DOI | MR | Zbl
[12] Lorden G., “Integrated risk of asymptotically Bayes sequential tests”, Ann. Math. Stat., 38:5 (1967), 1399–1422 | DOI | MR | Zbl
[13] Lorden G., “Open-ended tests for Koopman–Darmois families”, Ann. Stat., 1:4 (1973), 633–643 | DOI | MR | Zbl
[14] Lorden G., “2-SPRT's and the modified Kiefer–Weiss problem of minimizing an expected sample size”, Ann. Stat., 4:2 (1976), 281–291 | DOI | MR | Zbl
[15] Lorden G., Nearly optimal sequential tests for exponential families, Tech. Rep., Calif. Inst. Technol., Pasadena, 1984
[16] Pavlov I.V., “Sequential procedure of testing composite hypotheses with applications to the Kiefer–Weiss problem”, Theory Probab. Appl., 35 (1991), 280–292 | DOI | MR | Zbl
[17] Robbins H., Siegmund D., “A class of stopping rules for testing parametric hypotheses”, Proc. Sixth Berkeley Symp. on Mathematical Statistics and Probability, 1970–1971. V. 4: Biology and health, eds. L.M. Le Cam, J. Neyman, E.L. Scott, Univ. Calif. Press, Berkeley, CA, 1972 | MR
[18] Robbins H., Siegmund D., “The expected sample size of some tests of power one”, Ann. Stat., 2:3 (1974), 415–436 | DOI | MR | Zbl
[19] Schwarz G., “Asymptotic shapes of Bayes sequential testing regions”, Ann. Math. Stat., 33:1 (1962), 224–236 | DOI | MR | Zbl
[20] Tartakovsky A.G., “Asymptotic optimality of certain multihypothesis sequential tests: Non-i.i.d. case”, Stat. Inference Stoch. Processes, 1:3 (1998), 265–295 | DOI | MR | Zbl
[21] Tartakovsky A., Nikiforov I., Basseville M., Sequential analysis: Hypothesis testing and changepoint detection, Monogr. Stat. Appl. Probab., 136, Chapman and Hall/CRC Press, Boca Raton, FL, 2014 | MR
[22] Wald A., Sequential analysis, J. Wiley Sons, New York, 1947 | MR | Zbl
[23] Wald A., Wolfowitz J., “Optimum character of the sequential probability ratio test”, Ann. Math. Stat., 19:3 (1948), 326–339 | DOI | MR | Zbl
[24] Weiss L., “On sequential tests which minimize the maximum expected sample size”, J. Amer. Stat. Assoc., 57 (1962), 551–566 | DOI | MR | Zbl
[25] Wong S.P., “Asymptotically optimum properties of certain sequential tests”, Ann. Math. Stat., 39:4 (1968), 1244–1263 | DOI | MR | Zbl