Nearly optimal sequential tests of composite hypotheses revisited
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 279-299.

Voir la notice de l'article provenant de la source Math-Net.Ru

We revisit the problem of sequential testing composite hypotheses, considering multiple hypotheses and very general non-i.i.d. stochastic models. Two sequential tests are studied: the multihypothesis generalized sequential likelihood ratio test and the multihypothesis adaptive sequential likelihood ratio test with one-stage delayed estimators. While the latter loses information compared to the former, it has an advantage in designing thresholds to guarantee given upper bounds for probabilities of errors, which is practically impossible for the generalized likelihood ratio type tests. It is shown that both tests have asymptotic optimality properties minimizing the expected sample size or even more generally higher moments of the stopping time as probabilities of errors vanish. Two examples that illustrate the general theory are presented.
@article{TM_2014_287_a15,
     author = {Alexander G. Tartakovsky},
     title = {Nearly optimal sequential tests of composite hypotheses revisited},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {279--299},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a15/}
}
TY  - JOUR
AU  - Alexander G. Tartakovsky
TI  - Nearly optimal sequential tests of composite hypotheses revisited
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 279
EP  - 299
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_287_a15/
LA  - en
ID  - TM_2014_287_a15
ER  - 
%0 Journal Article
%A Alexander G. Tartakovsky
%T Nearly optimal sequential tests of composite hypotheses revisited
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 279-299
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_287_a15/
%G en
%F TM_2014_287_a15
Alexander G. Tartakovsky. Nearly optimal sequential tests of composite hypotheses revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 279-299. http://geodesic.mathdoc.fr/item/TM_2014_287_a15/

[1] Anderson T.W., “A modification of the sequential probability ratio test to reduce the sample size”, Ann. Math. Stat., 31:1 (1960), 165–197 | DOI | MR | Zbl

[2] Bechhofer R., “A note on the limiting relative efficiency of the Wald sequential probability ratio test”, J. Amer. Stat. Assoc., 55 (1960), 660–663 | DOI | MR | Zbl

[3] Chan H.P., Lai T.L., “Asymptotic approximations for error probabilities of sequential or fixed sample size tests in exponential families”, Ann. Stat., 28:6 (2000), 1638–1669 | DOI | MR | Zbl

[4] Dragalin V.P., Novikov A.A., “Asymptotic solution of the Kiefer–Weiss problem for processes with independent increments”, Theory Probab. Appl., 32 (1988), 617–627 | DOI | MR

[5] Dragalin V.P., Novikov A.A., “Adaptive sequential tests for composite hypotheses”, Obozr. prikl. i promyshl. matematiki, 6:2 (1999), 387–399 | MR | Zbl

[6] Dragalin V.P., Tartakovsky A.G., Veeravalli V.V., “Multihypothesis sequential probability ratio tests. I: Asymptotic optimality”, IEEE Trans. Inf. Theory, 45:7 (1999), 2448–2461 | DOI | MR | Zbl

[7] Huffman M.D., “An efficient approximate solution to the Kiefer–Weiss problem”, Ann. Stat., 11:1 (1983), 306–316 | DOI | MR | Zbl

[8] Kiefer J., Weiss L., “Properties of generalized sequential probability ratio tests”, Ann. Math. Stat., 28:1 (1957), 57–74 | DOI | MR | Zbl

[9] Lai T.L., “Asymptotic optimality of invariant sequential probability ratio tests”, Ann. Stat., 9:2 (1981), 318–333 | DOI | MR | Zbl

[10] Lai T.L., “Nearly optimal sequential tests of composite hypotheses”, Ann. Stat., 16:2 (1988), 856–886 | DOI | MR | Zbl

[11] Lai T.L., Zhang L., “A modification of Schwarz's sequential likelihood ratio tests in mulitvariate sequential analysis”, Sequential Anal., 13:2 (1994), 79–96 | DOI | MR | Zbl

[12] Lorden G., “Integrated risk of asymptotically Bayes sequential tests”, Ann. Math. Stat., 38:5 (1967), 1399–1422 | DOI | MR | Zbl

[13] Lorden G., “Open-ended tests for Koopman–Darmois families”, Ann. Stat., 1:4 (1973), 633–643 | DOI | MR | Zbl

[14] Lorden G., “2-SPRT's and the modified Kiefer–Weiss problem of minimizing an expected sample size”, Ann. Stat., 4:2 (1976), 281–291 | DOI | MR | Zbl

[15] Lorden G., Nearly optimal sequential tests for exponential families, Tech. Rep., Calif. Inst. Technol., Pasadena, 1984

[16] Pavlov I.V., “Sequential procedure of testing composite hypotheses with applications to the Kiefer–Weiss problem”, Theory Probab. Appl., 35 (1991), 280–292 | DOI | MR | Zbl

[17] Robbins H., Siegmund D., “A class of stopping rules for testing parametric hypotheses”, Proc. Sixth Berkeley Symp. on Mathematical Statistics and Probability, 1970–1971. V. 4: Biology and health, eds. L.M. Le Cam, J. Neyman, E.L. Scott, Univ. Calif. Press, Berkeley, CA, 1972 | MR

[18] Robbins H., Siegmund D., “The expected sample size of some tests of power one”, Ann. Stat., 2:3 (1974), 415–436 | DOI | MR | Zbl

[19] Schwarz G., “Asymptotic shapes of Bayes sequential testing regions”, Ann. Math. Stat., 33:1 (1962), 224–236 | DOI | MR | Zbl

[20] Tartakovsky A.G., “Asymptotic optimality of certain multihypothesis sequential tests: Non-i.i.d. case”, Stat. Inference Stoch. Processes, 1:3 (1998), 265–295 | DOI | MR | Zbl

[21] Tartakovsky A., Nikiforov I., Basseville M., Sequential analysis: Hypothesis testing and changepoint detection, Monogr. Stat. Appl. Probab., 136, Chapman and Hall/CRC Press, Boca Raton, FL, 2014 | MR

[22] Wald A., Sequential analysis, J. Wiley Sons, New York, 1947 | MR | Zbl

[23] Wald A., Wolfowitz J., “Optimum character of the sequential probability ratio test”, Ann. Math. Stat., 19:3 (1948), 326–339 | DOI | MR | Zbl

[24] Weiss L., “On sequential tests which minimize the maximum expected sample size”, J. Amer. Stat. Assoc., 57 (1962), 551–566 | DOI | MR | Zbl

[25] Wong S.P., “Asymptotically optimum properties of certain sequential tests”, Ann. Math. Stat., 39:4 (1968), 1244–1263 | DOI | MR | Zbl