Critical dimension in the semiparametric Bernstein--von~Mises theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 242-266

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical parametric and semiparametric Bernstein–von Mises (BvM) results are reconsidered in a nonclassical setup allowing finite samples and model misspecification. In the parametric case and in the case of a finite-dimensional nuisance parameter, we establish an upper bound on the error of Gaussian approximation of the posterior distribution of the target parameter; the bound depends explicitly on the dimension of the full and target parameters and on the sample size. This helps to identify the so-called critical dimension $p_n$ of the full parameter for which the BvM result is applicable. In the important special i.i.d. case, we show that the condition "$p_n^3/n$ is small" is sufficient for the BvM result to be valid under general assumptions on the model. We also provide an example of a model with the phase transition effect: the statement of the BvM theorem fails when the dimension $p_n$ approaches $n^{1/3}$.
@article{TM_2014_287_a13,
     author = {Maxim E. Panov and Vladimir G. Spokoiny},
     title = {Critical dimension in the semiparametric {Bernstein--von~Mises} theorem},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {242--266},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a13/}
}
TY  - JOUR
AU  - Maxim E. Panov
AU  - Vladimir G. Spokoiny
TI  - Critical dimension in the semiparametric Bernstein--von~Mises theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 242
EP  - 266
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_287_a13/
LA  - ru
ID  - TM_2014_287_a13
ER  - 
%0 Journal Article
%A Maxim E. Panov
%A Vladimir G. Spokoiny
%T Critical dimension in the semiparametric Bernstein--von~Mises theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 242-266
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_287_a13/
%G ru
%F TM_2014_287_a13
Maxim E. Panov; Vladimir G. Spokoiny. Critical dimension in the semiparametric Bernstein--von~Mises theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 242-266. http://geodesic.mathdoc.fr/item/TM_2014_287_a13/