Two-sided disorder problem for a~Brownian motion in a~Bayesian setting
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 211-233
Voir la notice de l'article provenant de la source Math-Net.Ru
A two-sided disorder problem for a Brownian motion in a Bayesian setting is considered. It is shown how to reduce this problem to the standard optimal stopping problem for a posterior probability process. Qualitative properties of a solution are analyzed; namely, the concavity, continuity, and the smooth-fit principle for the risk function are proved. Optimal stopping boundaries are characterized as a unique solution to some integral equation.
@article{TM_2014_287_a11,
author = {A. A. Muravlev and A. N. Shiryaev},
title = {Two-sided disorder problem for {a~Brownian} motion in {a~Bayesian} setting},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {211--233},
publisher = {mathdoc},
volume = {287},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a11/}
}
TY - JOUR AU - A. A. Muravlev AU - A. N. Shiryaev TI - Two-sided disorder problem for a~Brownian motion in a~Bayesian setting JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 211 EP - 233 VL - 287 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_287_a11/ LA - ru ID - TM_2014_287_a11 ER -
A. A. Muravlev; A. N. Shiryaev. Two-sided disorder problem for a~Brownian motion in a~Bayesian setting. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 211-233. http://geodesic.mathdoc.fr/item/TM_2014_287_a11/