Two-sided disorder problem for a~Brownian motion in a~Bayesian setting
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 211-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-sided disorder problem for a Brownian motion in a Bayesian setting is considered. It is shown how to reduce this problem to the standard optimal stopping problem for a posterior probability process. Qualitative properties of a solution are analyzed; namely, the concavity, continuity, and the smooth-fit principle for the risk function are proved. Optimal stopping boundaries are characterized as a unique solution to some integral equation.
@article{TM_2014_287_a11,
     author = {A. A. Muravlev and A. N. Shiryaev},
     title = {Two-sided disorder problem for {a~Brownian} motion in {a~Bayesian} setting},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {211--233},
     publisher = {mathdoc},
     volume = {287},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a11/}
}
TY  - JOUR
AU  - A. A. Muravlev
AU  - A. N. Shiryaev
TI  - Two-sided disorder problem for a~Brownian motion in a~Bayesian setting
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 211
EP  - 233
VL  - 287
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_287_a11/
LA  - ru
ID  - TM_2014_287_a11
ER  - 
%0 Journal Article
%A A. A. Muravlev
%A A. N. Shiryaev
%T Two-sided disorder problem for a~Brownian motion in a~Bayesian setting
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 211-233
%V 287
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_287_a11/
%G ru
%F TM_2014_287_a11
A. A. Muravlev; A. N. Shiryaev. Two-sided disorder problem for a~Brownian motion in a~Bayesian setting. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 211-233. http://geodesic.mathdoc.fr/item/TM_2014_287_a11/

[1] Gapeev P.V., Peskir G., “The Wiener disorder problem with finite horizon”, Stoch. Processes Appl., 116:12 (2006), 1770–1791 | DOI | MR | Zbl

[2] Peskir G., “On the American option problem”, Math. Finance, 15:1 (2005), 169–181 | DOI | MR | Zbl

[3] Peskir G., “On the fundamental solution of the Kolmogorov–Shiryaev equation”, From stochastic calculus to mathematical finance, Springer, Berlin, 2006, 535–546 | DOI | MR

[4] Peskir G., “A change-of-variable formula with local time on surfaces”, Séminaire de probabilités XL, Lect. Notes Math., 1899, Springer, Berlin, 2007, 69–96 | MR | Zbl

[5] Peskir G., Shiryaev A., Optimal stopping and free-boundary problems, Birkhäuser, Basel, 2006 | MR | Zbl

[6] Aliev A.F., “O printsipe gladkogo skleivaniya v $\mathbb R^n$”, UMN, 62:4 (2007), 147–148 | DOI | MR | Zbl

[7] Grigelionis B.I., Shiryaev A.N., “O zadache Stefana i optimalnykh pravilakh ostanovki markovskikh protsessov”, Teoriya veroyatn. i ee primen., 11:4 (1966), 612–631 | MR | Zbl

[8] Zvonkin A.K., “Preobrazovanie fazovogo prostranstva diffuzionnogo protsessa, unichtozhayuschee snos”, Mat. sb., 93:1 (1974), 129–149 | MR | Zbl

[9] Liptser R.Sh., Shiryaev A.N., Statistika sluchainykh protsessov: Nelineinaya filtratsiya i smezhnye voprosy, Nauka, M., 1974 | MR | Zbl

[10] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[11] Shiryaev A.N., Statisticheskii posledovatelnyi analiz: Optimalnye pravila ostanovki, 2-e izd., Nauka, M., 1976 | MR | Zbl