Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_287_a1, author = {A. T. Abakirova}, title = {On some functional inequalities for skew {Brownian} motion}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {9--20}, publisher = {mathdoc}, volume = {287}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2014_287_a1/} }
A. T. Abakirova. On some functional inequalities for skew Brownian motion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Stochastic calculus, martingales, and their applications, Tome 287 (2014), pp. 9-20. http://geodesic.mathdoc.fr/item/TM_2014_287_a1/
[1] Abakirova A.T., “Analogi neravenstva Puankare–Chernova i logarifmicheskogo neravenstva Soboleva dlya protsessov s nezavisimymi prirascheniyami”, UMN, 62:6 (2007), 163–164 | DOI | MR | Zbl
[2] Abakirova A.T., “Funktsionalnye neravenstva na prostranstvakh traektorii protsessov s nezavisimymi prirascheniyami”, UMN, 67:2 (2012), 191–192 | DOI | MR | Zbl
[3] Ané C., Blachère S., Chafaï D., Fougères P., Gentil I., Malrieu F., Roberto C., Scheffer G., Sur les inégalités de Sobolev logarithmiques, Panoramas et Synthèses, 10, Soc. math. France, Paris, 2000 | MR | Zbl
[4] Bakry D., Émery M., “Diffusions hypercontractives”, Séminaire de probabilités XIX (Univ. Strasbourg), 1983/84, Lect. Notes Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR
[5] Bass R.F., Chen Z.-Q., “One-dimensional stochastic differential equations with singular and degenerate coefficients”, Sankhyā, 67:1 (2005), 19–45 | MR | Zbl
[6] Capitaine M., Hsu E.P., Ledoux M., “Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces”, Electron. Commun. Probab., 2 (1997), 71–81 | DOI | MR | Zbl
[7] Chafaï D., “Entropies, convexity, and functional inequalities: on $\Phi $-entropies and $\Phi $-Sobolev inequalities”, J. Math. Kyoto Univ., 44:2 (2004), 325–363 | MR
[8] Chen L.H.Y., “Poincaré-type inequalities via stochastic integrals”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 69:2 (1985), 251–277 | DOI | MR | Zbl
[9] Chernoff H., “A note on an inequality involving the normal distribution”, Ann. Probab., 9:3 (1981), 533–535 | DOI | MR | Zbl
[10] Cherny A.S., Shiryaev A.N., Yor M., “Limit behavior of the “horizontal–vertical” random walk and some extensions of the Donsker–Prokhorov invariance principle”, Teoriya veroyatn. i ee primen., 47:3 (2002), 498–517 | DOI | MR | Zbl
[11] Engelbert H.J., Schmidt W., “On one-dimensional stochastic differential equations with generalized drift”, Stochastic differential systems: Filtering and control, Proc. IFIP-WG 7/1 Work. Conf., Marseille–Luminy, 1984, Lect. Notes Control Inf. Sci., 69, Springer, Berlin, 1985, 143–155 | DOI | MR
[12] Freidlin M., Sheu S.-J., “Diffusion processes on graphs: Stochastic differential equations, large deviation principle”, Probab. Theory Relat. Fields, 116:2 (2000), 181–220 | DOI | MR | Zbl
[13] Gentil I., Guillin A., Miclo L., “Modified logarithmic Sobolev inequalities and transportation inequalities”, Probab. Theory Relat. Fields, 133:3 (2005), 409–436 | DOI | MR | Zbl
[14] Gross L., “Logarithmic Sobolev inequalities”, Amer. J. Math., 97 (1975), 1061–1083 | DOI | MR
[15] Guionnet A., Zegarlinski B., “Lectures on logarithmic Sobolev inequalities”, Séminaire de probabilités XXXVI, Lect. Notes Math., 1801, Springer, Berlin, 2003, 1–134 | DOI | MR | Zbl
[16] Harrison J.M., Shepp L.A., “On skew Brownian motion”, Ann. Probab., 9:2 (1981), 309–313 | DOI | MR | Zbl
[17] Itô K., McKean H.P., Jr., Diffusion processes and their sample paths, 2nd ed., Springer, Berlin, 1974 | MR | Zbl
[18] Karatzas I., Shreve S.E., Brownian motion and stochastic calculus, 2nd ed., Springer, New York, 1991 | MR | Zbl
[19] Ledoux M., “Concentration of measure and logarithmic Sobolev inequalities”, Séminaire de probabilités XXXIII, Lect. Notes Math., 1709, Springer, Berlin, 1999, 120–216 | DOI | MR | Zbl
[20] Lejay A., “On the constructions of the skew Brownian motion”, Probab. Surv., 3 (2006), 413–466 | DOI | MR | Zbl
[21] Lejay A., Martinez M., “A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients”, Ann. Appl. Probab., 16:1 (2006), 107–139 | DOI | MR | Zbl
[22] Nash J., “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math., 80 (1958), 931–954 | DOI | MR | Zbl
[23] Otto F., Villani C., “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality”, J. Funct. Anal., 173:2 (2000), 361–400 | DOI | MR | Zbl
[24] Peskir G., Shiryaev A., Optimal stopping and free-boundary problems, Birkhäuser, Basel, 2006 | MR | Zbl
[25] Pisier G., “Probabilistic methods in the geometry of Banach spaces”, Probability and analysis, Lect. Notes Math., 1206, Springer, Berlin, 1986, 167–241 | DOI | MR
[26] Portenko N.I., “Diffuzionnye protsessy s obobschennym koeffitsientom perenosa”, Teoriya veroyatn. i ee primen., 24:1 (1979), 62–77 | MR | Zbl
[27] Portenko N.I., “Stokhasticheskie differentsialnye uravneniya s obobschennym vektorom perenosa”, Teoriya veroyatn. i ee primen., 24:2 (1979), 332–347 | MR | Zbl
[28] Revuz D., Yor M., Continuous martingales and Brownian motion, Springer, Berlin, 1994 | MR | Zbl
[29] Shiryaev A.N., “Dokazatelstvo neravenstva Puankare–Chernova i logarifmicheskogo neravenstva Soboleva metodami stokhasticheskogo ischisleniya dlya brounovskogo dvizheniya”, UMN, 61:3 (2006), 177–178 | DOI | MR | Zbl
[30] Walsh J.B., “A diffusion with a discontinuous local time”, Temps locaux. Exposés du séminaire J. Azema–M. Yor (1976–1977), Astérisque, 52–53, Soc. math. France, Paris, 1978, 37–45 | MR
[31] Weinryb S., “Homogénéisation pour des processus associés à des frontières perméables”, Ann. Inst. Henri Poincaré. Probab. Stat., 20:4 (1984), 373–407 | MR | Zbl