Geometry of compact complex manifolds with maximal torus action
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 219-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of compact complex manifolds $M$ equipped with a maximal action of a torus $T=(S^1)^k$. We present two equivalent constructions that allow one to build any such manifold on the basis of special combinatorial data given by a simplicial fan $\Sigma$ and a complex subgroup $H\subset T_\mathbb C=(\mathbb C^*)^k$. On every manifold $M$ we define a canonical holomorphic foliation $\mathcal F$ and, under additional restrictions on the combinatorial data, construct a transverse Kähler form $\omega _\mathcal F$. As an application of these constructions, we extend some results on the geometry of moment–angle manifolds to the case of manifolds $M$.
@article{TM_2014_286_a9,
     author = {Yu. M. Ustinovsky},
     title = {Geometry of compact complex manifolds with maximal torus action},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {219--230},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a9/}
}
TY  - JOUR
AU  - Yu. M. Ustinovsky
TI  - Geometry of compact complex manifolds with maximal torus action
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 219
EP  - 230
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a9/
LA  - ru
ID  - TM_2014_286_a9
ER  - 
%0 Journal Article
%A Yu. M. Ustinovsky
%T Geometry of compact complex manifolds with maximal torus action
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 219-230
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a9/
%G ru
%F TM_2014_286_a9
Yu. M. Ustinovsky. Geometry of compact complex manifolds with maximal torus action. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 219-230. http://geodesic.mathdoc.fr/item/TM_2014_286_a9/

[1] Danilov V.I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl

[2] Fulton W., Introduction to toric varieties, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[3] Cox D.A., “The homogeneous coordinate ring of a toric variety”, J. Algebr. Geom., 4 (1995), 17–50 | MR | Zbl

[4] Stanley R.P., “The number of faces of a simplicial convex polytope”, Adv. Math., 35 (1980), 236–238 | DOI | MR | Zbl

[5] Pommersheim J.E., “Toric varieties, lattice points and Dedekind sums”, Math. Ann., 295 (1993), 1–24 | DOI | MR | Zbl

[6] Leung N.C., Reiner V., “The signature of a toric variety”, Duke Math. J., 111:2 (2002), 253–286 | DOI | MR | Zbl

[7] Meersseman L., “A new geometric construction of compact complex manifolds in any dimension”, Math. Ann., 317:1 (2000), 79–115 | DOI | MR | Zbl

[8] Bosio F., Meersseman L., “Real quadrics in $\mathbb C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | DOI | MR | Zbl

[9] Tambour J., “LVMB manifolds and simplicial spheres”, Ann. Inst. Fourier, 62:4 (2012), 1289–1317 | DOI | MR | Zbl

[10] Meersseman L., Verjovsky A., “Holomorphic principal bundles over projective toric varieties”, J. reine angew. Math., 572 (2004), 57–96 | MR | Zbl

[11] Panov T., Ustinovsky Yu., Verbitsky M., Complex geometry of moment–angle manifolds, E-print, 2013, arXiv: 1308.2818 [math.CV]

[12] Battaglia F., Zaffran D., Foliations modelling nonrational simplicial toric varieties, E-print, 2011, arXiv: 1108.1637 [math.CV] | MR

[13] Panov T., Ustinovsky Yu., “Complex-analytic structures on moment–angle manifolds”, Moscow Math. J., 12:1 (2012), 149–172 | MR | Zbl

[14] Ishida H., Complex manifolds with maximal torus actions, E-print, 2013, arXiv: 1302.0633 [math.CV] | MR

[15] Bredon G.E., Introduction to compact transformation groups, Acad. Press, New York, 1972 | MR | Zbl

[16] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. math. France, 116:3 (1988), 315–339 | MR | Zbl

[17] Bukhshtaber V.M., Panov T.E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[18] Demailly J.-P., Complex analytic and differential geometry, E-print, 2012 http://www-fourier.ujf-grenoble.fr/demailly/documents.html