Geometry of compact complex manifolds with maximal torus action
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 219-230

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the geometry of compact complex manifolds $M$ equipped with a maximal action of a torus $T=(S^1)^k$. We present two equivalent constructions that allow one to build any such manifold on the basis of special combinatorial data given by a simplicial fan $\Sigma$ and a complex subgroup $H\subset T_\mathbb C=(\mathbb C^*)^k$. On every manifold $M$ we define a canonical holomorphic foliation $\mathcal F$ and, under additional restrictions on the combinatorial data, construct a transverse Kähler form $\omega _\mathcal F$. As an application of these constructions, we extend some results on the geometry of moment–angle manifolds to the case of manifolds $M$.
@article{TM_2014_286_a9,
     author = {Yu. M. Ustinovsky},
     title = {Geometry of compact complex manifolds with maximal torus action},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {219--230},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a9/}
}
TY  - JOUR
AU  - Yu. M. Ustinovsky
TI  - Geometry of compact complex manifolds with maximal torus action
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 219
EP  - 230
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a9/
LA  - ru
ID  - TM_2014_286_a9
ER  - 
%0 Journal Article
%A Yu. M. Ustinovsky
%T Geometry of compact complex manifolds with maximal torus action
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 219-230
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a9/
%G ru
%F TM_2014_286_a9
Yu. M. Ustinovsky. Geometry of compact complex manifolds with maximal torus action. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 219-230. http://geodesic.mathdoc.fr/item/TM_2014_286_a9/