Stanley--Reisner rings of generalized truncation polytopes and their moment--angle manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 207-218

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider simple polytopes $P=\mathrm{vc}^k(\Delta^{n_1}\times\dots\times\Delta^{n_r})$ for $n_1\ge\dots\ge n_r\ge1$, $r\ge1$, and $k\ge0$, that is, $k$-vertex cuts of a product of simplices, and call them generalized truncation polytopes. For these polytopes we describe the cohomology ring of the corresponding moment–angle manifold $\mathcal Z_P$ and explore some topological consequences of this calculation. We also examine minimal non-Golodness for their Stanley–Reisner rings and relate it to the property of $\mathcal Z_P$ being a connected sum of sphere products.
@article{TM_2014_286_a8,
     author = {I. Yu. Limonchenko},
     title = {Stanley--Reisner rings of generalized truncation polytopes and their moment--angle manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {207--218},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a8/}
}
TY  - JOUR
AU  - I. Yu. Limonchenko
TI  - Stanley--Reisner rings of generalized truncation polytopes and their moment--angle manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 207
EP  - 218
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a8/
LA  - ru
ID  - TM_2014_286_a8
ER  - 
%0 Journal Article
%A I. Yu. Limonchenko
%T Stanley--Reisner rings of generalized truncation polytopes and their moment--angle manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 207-218
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a8/
%G ru
%F TM_2014_286_a8
I. Yu. Limonchenko. Stanley--Reisner rings of generalized truncation polytopes and their moment--angle manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 207-218. http://geodesic.mathdoc.fr/item/TM_2014_286_a8/