Complex projective towers and their cohomological rigidity up to dimension six
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 308-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex projective tower, or simply a $\mathbb C\mathrm P$-tower, is an iterated complex projective fibration starting from a point. In this paper we classify all six-dimensional $\mathbb C\mathrm P$-towers up to diffeomorphism, and as a consequence we show that all such manifolds are cohomologically rigid, i.e., they are completely determined up to diffeomorphism by their cohomology rings.
@article{TM_2014_286_a16,
     author = {Shintar\^o Kuroki and DongYoup Suh},
     title = {Complex projective towers and their cohomological rigidity up to dimension six},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {308--330},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a16/}
}
TY  - JOUR
AU  - Shintarô Kuroki
AU  - DongYoup Suh
TI  - Complex projective towers and their cohomological rigidity up to dimension six
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 308
EP  - 330
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a16/
LA  - en
ID  - TM_2014_286_a16
ER  - 
%0 Journal Article
%A Shintarô Kuroki
%A DongYoup Suh
%T Complex projective towers and their cohomological rigidity up to dimension six
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 308-330
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a16/
%G en
%F TM_2014_286_a16
Shintarô Kuroki; DongYoup Suh. Complex projective towers and their cohomological rigidity up to dimension six. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 308-330. http://geodesic.mathdoc.fr/item/TM_2014_286_a16/

[1] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces. I”, Amer. J. Math., 80 (1958), 458–538 | DOI | MR

[2] Bott R., Samelson H., “Applications of the theory of Morse to symmetric spaces”, Amer. J. Math., 80 (1958), 964–1029 | DOI | MR

[3] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[4] Choi S., Classification of Bott manifolds up to dimension eight, E-print, 2011, arXiv: 1112.2321 [math.AT]

[5] Choi S., Masuda M., Suh D.Y., “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362:2 (2010), 1097–1112 | DOI | MR | Zbl

[6] Proc. Steklov Inst. Math., 275 (2011), 177–190, arXiv: 1102.1359 [math.AT] | DOI | MR | Zbl

[7] Choi S., Park S., Suh D.Y., Topological classification of quasitoric manifolds with the second Betti number $2$, E-print, 2010, arXiv: 1005.5431 [math.AT]

[8] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[9] Grossberg M., Karshon Y., “Bott towers, complete integrability, and the extended character of representations”, Duke Math. J., 76:1 (1994), 23–58 | DOI | MR | Zbl

[10] Hirzebruch F., “Über eine Klasse von einfach-zusammenhängenden komplexen Mannigfaltigkeiten”, Math. Ann., 124 (1951), 77–86 | DOI | MR | Zbl

[11] Husemoller D., Fibre bundles, Grad. Texts Math., 20, 3rd ed., Springer, New York, 1994 | DOI | MR

[12] Kuroki S., Suh D.Y., Cohomological non-rigidity of eight-dimensional complex projective towers, Preprint 13-12. OCAMI Preprint Ser., Osaka City Univ., Osaka, 2013

[13] Masuda M., Panov T.E., “Semifree circle actions, Bott towers and quasitoric manifolds”, Sb. Math., 199 (2008), 1201–1223 | DOI | DOI | MR | Zbl

[14] Masuda M., Suh D.Y., “Classification problems of toric manifolds via topology”, Toric topology (Osaka, 2006), Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 | DOI | MR | Zbl

[15] Schwarzenberger R.L.E., “Vector bundles on algebraic surfaces”, Proc. London Math. Soc. Ser. 3., 11 (1961), 601–622 | DOI | MR | Zbl