Complex projective towers and their cohomological rigidity up to dimension six
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 308-330

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex projective tower, or simply a $\mathbb C\mathrm P$-tower, is an iterated complex projective fibration starting from a point. In this paper we classify all six-dimensional $\mathbb C\mathrm P$-towers up to diffeomorphism, and as a consequence we show that all such manifolds are cohomologically rigid, i.e., they are completely determined up to diffeomorphism by their cohomology rings.
@article{TM_2014_286_a16,
     author = {Shintar\^o Kuroki and DongYoup Suh},
     title = {Complex projective towers and their cohomological rigidity up to dimension six},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {308--330},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a16/}
}
TY  - JOUR
AU  - Shintarô Kuroki
AU  - DongYoup Suh
TI  - Complex projective towers and their cohomological rigidity up to dimension six
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 308
EP  - 330
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a16/
LA  - en
ID  - TM_2014_286_a16
ER  - 
%0 Journal Article
%A Shintarô Kuroki
%A DongYoup Suh
%T Complex projective towers and their cohomological rigidity up to dimension six
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 308-330
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a16/
%G en
%F TM_2014_286_a16
Shintarô Kuroki; DongYoup Suh. Complex projective towers and their cohomological rigidity up to dimension six. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 308-330. http://geodesic.mathdoc.fr/item/TM_2014_286_a16/