On Cohen braids
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 22-39

Voir la notice de l'article provenant de la source Math-Net.Ru

For a general connected surface $M$ and an arbitrary braid $\alpha$ from the surface braid group $B_{n-1}(M)$, we study the system of equations $d_1\beta=\dots=d_n\beta=\alpha$, where the operation $d_i$ is the removal of the $i$th strand. We prove that for $M\neq S^2$ and $M\neq\mathbb R\mathrm P^2$, this system of equations has a solution $\beta\in B_n(M)$ if and only if $d_1\alpha=\dots=d_{n-1}\alpha$. We call the set of braids satisfying the last system of equations Cohen braids. We study Cohen braids and prove that they form a subgroup. We also construct a set of generators for the group of Cohen braids. In the cases of the sphere and the projective plane we give some examples for a small number of strands.
@article{TM_2014_286_a1,
     author = {V. G. Bardakov and V. V. Vershinin and J. Wu},
     title = {On {Cohen} braids},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {22--39},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a1/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - V. V. Vershinin
AU  - J. Wu
TI  - On Cohen braids
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 22
EP  - 39
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a1/
LA  - ru
ID  - TM_2014_286_a1
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A V. V. Vershinin
%A J. Wu
%T On Cohen braids
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 22-39
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a1/
%G ru
%F TM_2014_286_a1
V. G. Bardakov; V. V. Vershinin; J. Wu. On Cohen braids. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 22-39. http://geodesic.mathdoc.fr/item/TM_2014_286_a1/