On the Buchstaber formal group law and some related genera
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 7-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We calculate some formal group laws and genera closely related to the universal Buchstaber formal group law $\mathcal F_\text{B}$.
@article{TM_2014_286_a0,
     author = {M. Bakuradze},
     title = {On the {Buchstaber} formal group law and some related genera},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {286},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_286_a0/}
}
TY  - JOUR
AU  - M. Bakuradze
TI  - On the Buchstaber formal group law and some related genera
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 7
EP  - 21
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_286_a0/
LA  - ru
ID  - TM_2014_286_a0
ER  - 
%0 Journal Article
%A M. Bakuradze
%T On the Buchstaber formal group law and some related genera
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 7-21
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_286_a0/
%G ru
%F TM_2014_286_a0
M. Bakuradze. On the Buchstaber formal group law and some related genera. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic topology, convex polytopes, and related topics, Tome 286 (2014), pp. 7-21. http://geodesic.mathdoc.fr/item/TM_2014_286_a0/

[1] Bakuradze M., “Formalnye gruppy Bukhshtabera, Krichevera i Nadiradze sovpadayut”, UMN, 68:3 (2013), 189–190 | DOI | MR | Zbl

[2] Bakuradze M., “Computing the Krichever genus”, J. Homotopy Relat. Struct., 9:1 (2014), 85–93 | DOI | MR

[3] Bakuradze M., Jibladze M., “On the coefficient ring of the rational formal group law”, Proc. A. Razmadze Math. Inst., 159 (2012), 1–9 | MR | Zbl

[4] Bakuradze M., Jibladze M., Some explicit expressions concerning BP, E-print, 2013, arXiv: 1310.0783v2 [math.AT]

[5] Brown E.H., Jr., Peterson F.P., “A spectrum whose $Z_p$ cohomology is the algebra of reduced $p$th powers”, Topology, 5 (1966), 149–154 | DOI | MR | Zbl

[6] Bukhshtaber V.M., “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 185–186 | MR | Zbl

[7] Bukhshtaber V.M., “Koltso prostykh mnogogrannikov i differentsialnye uravneniya”, Tr. MIAN, 263, 2008, 18–43 | MR

[8] Bukhshtaber V.M., Bunkova E.Yu., “Formalnye gruppy Krichevera”, Funkts. analiz i ego pril., 45:2 (2011), 23–44 | DOI | MR

[9] Bukhshtaber V.M., Kholodov A.N., “Formalnye gruppy, funktsionalnye uravneniya i obobschennye teorii kogomologii”, Mat. sb., 181:1 (1990), 75–94 | MR | Zbl

[10] Buchstaber V., Panov T., Ray N., “Toric genera”, Int. Math. Res. Not., 2010:16 (2010), 3207–3262 | MR | Zbl

[11] Busato Ph., “Realization of Abel's universal formal group law”, Math. Z., 239 (2002), 527–561 | DOI | MR | Zbl

[12] Clarke F., Johnson K., “On the classifying ring for Abel formal group laws”, J. Pure Appl. Algebra, 213 (2009), 1290–1298 | DOI | MR | Zbl

[13] Hazewinkel M., “Constructing formal groups. I: The local one dimensional case”, J. Pure Appl. Algebra, 9 (1977), 131–149 | DOI | MR | Zbl

[14] Höhn G., Komplexe elliptische Geschlechter und $S^1$-äquivariante Kobordismustheorie, Diplomarbeit, Bonn Univ., Bonn, 1991, arXiv: math/0405232 [math.AT]

[15] Kordzaya K.D., Nadiradze R.G., “Ellipticheskie rody $N$-go urovnya i umbralnyi analiz”, Soobsch. AN Gruz. SSR, 135:1 (1989), 41–44 | MR | Zbl

[16] Krichever I.M., “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Mat. zametki, 47:2 (1990), 34–45 | MR

[17] Nadiradze R., Formal group and cohomology theories, Diss. Doct. Sci., Tbilisi, 1995

[18] Novikov S.P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. mat., 31:4 (1967), 855–951 | Zbl

[19] Ochanine S., “Sur les genres multiplicatifs définis par des intégrales elliptiques”, Topology, 26 (1987), 143–151 | DOI | MR | Zbl

[20] Quillen D., “On the formal group laws of unoriented and complex cobordism theory”, Bull. Amer. Math. Soc., 75 (1969), 1293–1298 | DOI | MR | Zbl

[21] Ravenel D.C., Complex cobordism and stable homotopy groups of spheres, Acad. Press, Orlando, 1986 | MR | Zbl

[22] Roman S., The umbral calculus, Acad. Press, Orlando, 1984, 67–70 | MR

[23] Rudyak Yu.B., On Thom spectra, orientability, and cobordism, Springer, Berlin, 1998 | MR | Zbl

[24] Schreieder S., “Dualization invariance and a new complex elliptic genus”, J. reine angew. Math., 692 (2014), 77–108, arXiv: 1109.5394v3 [math.AT] | Zbl