Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_284_a9, author = {V. A. Il'in and A. A. Kuleshov}, title = {Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {163--168}, publisher = {mathdoc}, volume = {284}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a9/} }
TY - JOUR AU - V. A. Il'in AU - A. A. Kuleshov TI - Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 163 EP - 168 VL - 284 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_284_a9/ LA - ru ID - TM_2014_284_a9 ER -
%0 Journal Article %A V. A. Il'in %A A. A. Kuleshov %T Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 163-168 %V 284 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2014_284_a9/ %G ru %F TM_2014_284_a9
V. A. Il'in; A. A. Kuleshov. Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 163-168. http://geodesic.mathdoc.fr/item/TM_2014_284_a9/
[1] Ilin V.A., Kuleshov A.A., “Obobschennye resheniya volnovogo uravneniya iz klassov $L_p$ i $W_p^1$ pri $p\geq 1$”, DAN, 446:4 (2012), 374–377 | Zbl
[2] Ilin V.A., Kuleshov A.A., “Kriterii prinadlezhnosti klassu $L_p$ pri $p\geq 1$ obobschennogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, DAN, 446:6 (2012), 612–614 | Zbl
[3] Ilin V.A., Kuleshov A.A., “Kriterii prinadlezhnosti klassu $W_p^1$ obobschennogo iz klassa $L_p$ resheniya volnovogo uravneniya”, DAN, 447:1 (2012), 15–17 | Zbl
[4] Ilin V.A., Kuleshov A.A., “Ob opredelenii obobschennogo iz klassa $L_p$ resheniya smeshannoi zadachi dlya volnovogo uravneniya cherez integralnoe tozhdestvo”, DAN, 447:3 (2012), 247–251 | Zbl
[5] Ilin V.A., Kuleshov A.A., “O nekotorykh svoistvakh obobschennykh reshenii volnovogo uravneniya iz klassov $L_p$ i $W_p^1$ pri $p\geq 1$”, Dif. uravneniya, 48:11 (2012), 1493–1500 | Zbl
[6] Ilin V.A., Kuleshov A.A., “Neobkhodimoe i dostatochnoe uslovie prinadlezhnosti klassu $L_p$ pri $p\geq 1$ obobschennogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Dif. uravneniya, 48:12 (2012), 1607–1611 | Zbl
[7] Ilin V.A., Kuleshov A.A., “Neobkhodimye i dostatochnye usloviya prinadlezhnosti klassu $W^1_p$ pri $p\geq 1$ obobschennogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Tr. MIAN, 283, 2013, 115–120 | Zbl
[8] Ilin V.A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, UMN, 15:2 (1960), 97–154 | MR | Zbl
[9] Moiseev E.I., Kholomeeva A.A., “O razreshimosti smeshannykh zadach dlya uravneniya kolebanii struny v prostranstve $W^1_p$, $p\geq 1$”, DAN, 441:3 (2011), 310–312 | MR | Zbl