Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_284_a9, author = {V. A. Il'in and A. A. Kuleshov}, title = {Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {163--168}, publisher = {mathdoc}, volume = {284}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a9/} }
TY - JOUR AU - V. A. Il'in AU - A. A. Kuleshov TI - Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2014 SP - 163 EP - 168 VL - 284 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2014_284_a9/ LA - ru ID - TM_2014_284_a9 ER -
%0 Journal Article %A V. A. Il'in %A A. A. Kuleshov %T Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2014 %P 163-168 %V 284 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2014_284_a9/ %G ru %F TM_2014_284_a9
V. A. Il'in; A. A. Kuleshov. Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 163-168. http://geodesic.mathdoc.fr/item/TM_2014_284_a9/