Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 163-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

In our previous papers, we introduced the notion of a generalized solution to the initial-boundary value problem for the wave equation with a boundary function $\mu(t)$ such that the integral $\int_0^T(T-t)|\mu(t)|^p\,dt$ exists. Here we prove that this solution is a unique solution to the problem in $L_p$ that satisfies the corresponding integral identity.
@article{TM_2014_284_a9,
     author = {V. A. Il'in and A. A. Kuleshov},
     title = {Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {163--168},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a9/}
}
TY  - JOUR
AU  - V. A. Il'in
AU  - A. A. Kuleshov
TI  - Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 163
EP  - 168
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a9/
LA  - ru
ID  - TM_2014_284_a9
ER  - 
%0 Journal Article
%A V. A. Il'in
%A A. A. Kuleshov
%T Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 163-168
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a9/
%G ru
%F TM_2014_284_a9
V. A. Il'in; A. A. Kuleshov. Equivalence of two definitions of a~generalized $L_p$ solution to the initial-boundary value problem for the wave equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 163-168. http://geodesic.mathdoc.fr/item/TM_2014_284_a9/

[1] Ilin V.A., Kuleshov A.A., “Obobschennye resheniya volnovogo uravneniya iz klassov $L_p$ i $W_p^1$ pri $p\geq 1$”, DAN, 446:4 (2012), 374–377 | Zbl

[2] Ilin V.A., Kuleshov A.A., “Kriterii prinadlezhnosti klassu $L_p$ pri $p\geq 1$ obobschennogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, DAN, 446:6 (2012), 612–614 | Zbl

[3] Ilin V.A., Kuleshov A.A., “Kriterii prinadlezhnosti klassu $W_p^1$ obobschennogo iz klassa $L_p$ resheniya volnovogo uravneniya”, DAN, 447:1 (2012), 15–17 | Zbl

[4] Ilin V.A., Kuleshov A.A., “Ob opredelenii obobschennogo iz klassa $L_p$ resheniya smeshannoi zadachi dlya volnovogo uravneniya cherez integralnoe tozhdestvo”, DAN, 447:3 (2012), 247–251 | Zbl

[5] Ilin V.A., Kuleshov A.A., “O nekotorykh svoistvakh obobschennykh reshenii volnovogo uravneniya iz klassov $L_p$ i $W_p^1$ pri $p\geq 1$”, Dif. uravneniya, 48:11 (2012), 1493–1500 | Zbl

[6] Ilin V.A., Kuleshov A.A., “Neobkhodimoe i dostatochnoe uslovie prinadlezhnosti klassu $L_p$ pri $p\geq 1$ obobschennogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Dif. uravneniya, 48:12 (2012), 1607–1611 | Zbl

[7] Ilin V.A., Kuleshov A.A., “Neobkhodimye i dostatochnye usloviya prinadlezhnosti klassu $W^1_p$ pri $p\geq 1$ obobschennogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Tr. MIAN, 283, 2013, 115–120 | Zbl

[8] Ilin V.A., “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, UMN, 15:2 (1960), 97–154 | MR | Zbl

[9] Moiseev E.I., Kholomeeva A.A., “O razreshimosti smeshannykh zadach dlya uravneniya kolebanii struny v prostranstve $W^1_p$, $p\geq 1$”, DAN, 441:3 (2011), 310–312 | MR | Zbl