Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2014_284_a2, author = {E. I. Berezhnoi}, title = {Correction theorem for {Sobolev} spaces constructed by a~symmetric space}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {38--55}, publisher = {mathdoc}, volume = {284}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a2/} }
E. I. Berezhnoi. Correction theorem for Sobolev spaces constructed by a~symmetric space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 38-55. http://geodesic.mathdoc.fr/item/TM_2014_284_a2/
[1] Berezhnoi E.I., “Otsenki ravnomernogo modulya nepreryvnosti funktsii iz simmetrichnykh prostranstv”, Izv. RAN. Ser. mat., 60:2 (1996), 3–20 | DOI | MR | Zbl
[2] Bojarski B., Hajłasz P., Strzelecki P., “Improved $C^{k,\lambda}$ approximation of higher order Sobolev functions in norm and capacity”, Indiana Univ. Math. J., 51:3 (2002), 507–540 | DOI | MR | Zbl
[3] Burenkov V.I., Sobolev spaces on domains, Teubner-Texte Math., 137, Teubner, Stuttgart, 1998 | DOI | MR | Zbl
[4] Calderón A.P., Zygmund A., “Local properties of solutions of elliptic partial differential equations”, Stud. math., 20 (1961), 171–225 | MR | Zbl
[5] Evans L.K., Gariepi R.F., Teoriya mery i tonkie svoistva funktsii, Nauch. kn., Novosibirsk, 2002
[6] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[7] Hajłasz P., “Sobolev spaces on an arbitrary metric space”, Potenial Anal., 5 (1996), 403–415 | MR | Zbl
[8] Hajłasz P., “Sobolev spaces on metric-measure spaces”, Heat kernels and analysis on manifolds, graphs, and metric spaces, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003, 173–218 | DOI | MR | Zbl
[9] Hedberg L.I., Netrusov Yu., An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation, Mem. AMS, 188, no. 882, Amer. Math. Soc., Providence, RI, 2007 | MR
[10] Krein S.G., Petunin Yu.I., Semenov E.M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[11] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I, II, Springer, Berlin, 1977, 1979 | MR | Zbl
[12] Liu F.-C., “A Luzin type property of Sobolev functions”, Indiana Univ. Math. J., 26:4 (1977), 645–651 | DOI | MR | Zbl
[13] Liu F.-C., Tai W.-S., “Lusin properties and interpolation of Sobolev spaces”, Topol. Methods Nonlinear Anal., 9 (1997), 163–177 | MR | Zbl
[14] Mazya V.G., Prostranstva S.L. Soboleva, Izd-vo LGU, L., 1985 | MR | Zbl
[15] Michael J.H., Ziemer W.P., “A Lusin type approximation of Sobolev functions by smooth functions”, Classical real analysis, Contemp. Math., 42, Amer. Math. Soc., Providence, RI, 1985, 135–167 | DOI | MR
[16] Nguyen H.-M., “Some new characterizations of Sobolev spaces”, J. Funct. Anal., 237 (2006), 689–720 | DOI | MR | Zbl
[17] Stein I.M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[18] Stocke B.M., “A Lusin type approximation of Bessel potentials and Besov functions by smooth functions”, Math. Scand., 77 (1995), 60–70 | MR | Zbl
[19] Swanson D., “Pointwise inequalities and approximation in fractional Sobolev spaces”, Stud. math., 149 (2002), 147–174 | DOI | MR | Zbl
[20] Tuominen H., “Pointwise behaviour of Orlicz–Sobolev functions”, Ann. Mat. Pura Appl. Ser. 4, 188:1 (2009), 35–59 | DOI | MR | Zbl