Deviation of elements of a~Banach space from a~system of subspaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 212-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $X$ is a real Banach space, $Y_1\subset Y_2\subset\dots$ is a sequence of strictly embedded closed linear subspaces of $X$, and $d_1\ge d_2\ge\dots$ is a nonincreasing sequence converging to zero, then there exists an element $x\in X$ such that the distance $\rho(x,Y_n)$ from $x$ to $Y_n$ satisfies the inequalities $d_n\le\rho(x,Y_n)\le8d_n$ for $n=1,2,\dots$.
@article{TM_2014_284_a13,
     author = {S. V. Konyagin},
     title = {Deviation of elements of {a~Banach} space from a~system of subspaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {212--215},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a13/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - Deviation of elements of a~Banach space from a~system of subspaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 212
EP  - 215
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a13/
LA  - ru
ID  - TM_2014_284_a13
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T Deviation of elements of a~Banach space from a~system of subspaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 212-215
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a13/
%G ru
%F TM_2014_284_a13
S. V. Konyagin. Deviation of elements of a~Banach space from a~system of subspaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 212-215. http://geodesic.mathdoc.fr/item/TM_2014_284_a13/

[1] Borodin P.A., “K zadache suschestvovaniya elementa s zadannymi ukloneniyami ot rasshiryayuscheisya sistemy podprostranstv”, Mat. zametki, 80:5 (2006), 657–667 | DOI | MR | Zbl

[2] Bernshtein S.N., “Ob obratnoi zadache teorii nailuchshego priblizheniya nepreryvnykh funktsii”, Sobranie sochinenii, T. 2, Izd-vo AN SSSR, M., 1954, 292–294

[3] Timan A.F., Teoriya priblizhenii funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960 | MR

[4] Tyuremskikh I.S., “$(B)$-svoistvo gilbertovykh prostranstv”, Uchen. zap. Kalininsk. gos. ped. in-ta, 39 (1964), 53–64

[5] Nikolskii V.N., “O nekotorykh svoistvakh refleksivnykh prostranstv”, Uchen. zap. Kalininsk. gos. ped. in-ta, 29 (1963), 121–125 | MR

[6] Tyuremskikh I.S., “Ob odnoi zadache S.N. Bernshteina”, Uchen. zap. Kalininsk. gos. ped. in-ta, 52 (1967), 123–129

[7] Almiro J.M., Del Toro N., “Some remarks on negative results in approximation theory”, Proc. Fourth Int. Conf. on Functional Analysis and Approximation Theory, Potenza (Italy), 2000, V. 1, Rend. Circ. Mat. Palermo. Ser. 2. Suppl., 68, no. 1, Circ. Mat. Palermo, Palermo, 2002, 245–256 | MR

[8] Borodin P.A., Izbrannye approksimativnye svoistva mnozhestv v banakhovykh prostranstvakh, Dis. ... dokt. fiz.-mat. nauk, MGU, M., 2012