Sections of functions and Sobolev-type inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 200-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study functions of two variables whose sections by the lines parallel to the coordinate axis satisfy the Lipschitz condition of order $0\alpha\le1$. We prove that if for a function $f$ the $\operatorname{Lip}\alpha $-norms of these sections belong to the Lorentz space $L^{p,1}(\mathbb R)$ ($p=1/\alpha$), then $f$ can be modified on a set of measure zero so as to become bounded and uniformly continuous on $\mathbb R^2$. For $\alpha=1$ this gives an extension of Sobolev's theorem on continuity of functions of the space $W_1^{2,2}(\mathbb R^2)$. We show that the exterior $L^{p,1}$-norm cannot be replaced by a weaker Lorentz $L^{p,q}$-norm with $q>1$.
@article{TM_2014_284_a12,
     author = {V. I. Kolyada},
     title = {Sections of functions and {Sobolev-type} inequalities},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {200--211},
     publisher = {mathdoc},
     volume = {284},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2014_284_a12/}
}
TY  - JOUR
AU  - V. I. Kolyada
TI  - Sections of functions and Sobolev-type inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2014
SP  - 200
EP  - 211
VL  - 284
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2014_284_a12/
LA  - en
ID  - TM_2014_284_a12
ER  - 
%0 Journal Article
%A V. I. Kolyada
%T Sections of functions and Sobolev-type inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2014
%P 200-211
%V 284
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2014_284_a12/
%G en
%F TM_2014_284_a12
V. I. Kolyada. Sections of functions and Sobolev-type inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces and related problems of analysis, Tome 284 (2014), pp. 200-211. http://geodesic.mathdoc.fr/item/TM_2014_284_a12/

[1] Algervik R., Embedding theorems for mixed norm spaces and applications, PhD Thesis, Karlstad Univ. Stud., 16, Karlstad Univ., Karlstad, 2010

[2] Algervik R., Kolyada V.I., “On Fournier–Gagliardo mixed norm spaces”, Ann. Acad. Sci. Fenn. Math., 36 (2011), 493–508 | DOI | MR | Zbl

[3] Bennett C., Sharpley R., Interpolation of operators, Acad. Press, Boston, 1988 | MR

[4] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, 2-e izd., Nauka, M., 1996 | MR

[5] Blei R.C., Fournier J.J.F., “Mixed-norm conditions and Lorentz norms”, Commutative harmonic analysis (Canton, NY, 1987), Contemp. Math., 91, Amer. Math. Soc., Providence, RI, 1989, 57–78 | DOI | MR

[6] Fournier J., “Mixed norms and rearrangements: Sobolev's inequality and Littlewood's inequality”, Ann. Mat. Pura Appl. Ser. 4, 148 (1987), 51–76 | DOI | MR | Zbl

[7] Gagliardo E., “Proprietà di alcune classi di funzioni in più variabili”, Ricerche Mat., 7 (1958), 102–137 | MR | Zbl

[8] Kolyada V.I., “Mixed norms and Sobolev type inequalities”, Approximation and probability, Banach Center Publ., 72, Pol. Acad. Sci., Inst. Math., Warsaw, 2006, 141–160 | DOI | MR | Zbl

[9] Kolyada V.I., “Iterated rearrangements and Gagliardo–Sobolev type inequalities”, J. Math. Anal. Appl., 387 (2012), 335–348 | DOI | MR | Zbl

[10] Milman M., “Notes on interpolation of mixed norm spaces and applications”, Q. J. Math. Oxford. Ser. 2, 42:167 (1991), 325–334 | DOI | MR | Zbl

[11] Nirenberg L., “On elliptic partial differential equations”, Ann. Sc. Norm. Super. Pisa. Sci. Fis. Mat. Ser. 3, 13 (1959), 115–162 | MR | Zbl