Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 115-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish necessary and sufficient conditions on the boundary function under which a generalized solution to the initial–boundary value problem for the wave equation with boundary conditions of the first kind belongs to $W^1_p$.
@article{TM_2013_283_a7,
     author = {V. A. Il'in and A. A. Kuleshov},
     title = {Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {115--120},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a7/}
}
TY  - JOUR
AU  - V. A. Il'in
AU  - A. A. Kuleshov
TI  - Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 115
EP  - 120
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a7/
LA  - ru
ID  - TM_2013_283_a7
ER  - 
%0 Journal Article
%A V. A. Il'in
%A A. A. Kuleshov
%T Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 115-120
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a7/
%G ru
%F TM_2013_283_a7
V. A. Il'in; A. A. Kuleshov. Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 115-120. http://geodesic.mathdoc.fr/item/TM_2013_283_a7/