Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_283_a7, author = {V. A. Il'in and A. A. Kuleshov}, title = {Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {115--120}, publisher = {mathdoc}, volume = {283}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a7/} }
TY - JOUR AU - V. A. Il'in AU - A. A. Kuleshov TI - Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 115 EP - 120 VL - 283 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_283_a7/ LA - ru ID - TM_2013_283_a7 ER -
%0 Journal Article %A V. A. Il'in %A A. A. Kuleshov %T Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 115-120 %V 283 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_283_a7/ %G ru %F TM_2013_283_a7
V. A. Il'in; A. A. Kuleshov. Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 115-120. http://geodesic.mathdoc.fr/item/TM_2013_283_a7/