Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_283_a7, author = {V. A. Il'in and A. A. Kuleshov}, title = {Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {115--120}, publisher = {mathdoc}, volume = {283}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a7/} }
TY - JOUR AU - V. A. Il'in AU - A. A. Kuleshov TI - Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 115 EP - 120 VL - 283 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_283_a7/ LA - ru ID - TM_2013_283_a7 ER -
%0 Journal Article %A V. A. Il'in %A A. A. Kuleshov %T Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 115-120 %V 283 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_283_a7/ %G ru %F TM_2013_283_a7
V. A. Il'in; A. A. Kuleshov. Necessary and sufficient conditions for a~generalized solution to the initial-boundary value problem for the wave equation to belong to $W^1_p$ with~$p\geq1$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 115-120. http://geodesic.mathdoc.fr/item/TM_2013_283_a7/
[1] Ilin V.A., Kuleshov A.A., “Obobschennye resheniya volnovogo uravneniya iz klassov $L_p$ i $W_p^1$ pri $p\geq 1$”, DAN, 446:4 (2012), 374–377 | Zbl
[2] Ilin V.A., Kuleshov A.A., “Kriterii prinadlezhnosti klassu $L_p$ pri $p\geq 1$ obobschennogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, DAN, 446:6 (2012), 612–614 | Zbl
[3] Ilin V.A., Kuleshov A.A., “Kriterii prinadlezhnosti klassu $W_p^1$ obobschennogo iz klassa $L_p$ resheniya volnovogo uravneniya”, DAN, 447:1 (2012), 15–17 | Zbl
[4] Ilin V.A., Kuleshov A.A., “Ob opredelenii obobschennogo iz klassa $L_p$ resheniya smeshannoi zadachi dlya volnovogo uravneniya cherez integralnoe tozhdestvo”, DAN, 447:3 (2012), 247–251 | Zbl
[5] Ilin V.A., Kuleshov A.A., “O nekotorykh svoistvakh obobschennykh reshenii volnovogo uravneniya iz klassov $L_p$ i $W_p^1$ pri $p\geq 1$”, Dif. uravneniya, 48:11 (2012), 1493–1500 | Zbl
[6] Ilin V.A., Kuleshov A.A., “Neobkhodimoe i dostatochnoe uslovie prinadlezhnosti klassu $L_p$ pri $p\geq 1$ obobschennogo resheniya smeshannoi zadachi dlya volnovogo uravneniya”, Dif. uravneniya, 48:12 (2012), 1607–1611 | Zbl