Well-posedness of parabolic equations containing hysteresis with diffusive thresholds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 92-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study complex systems arising, in particular, in population dynamics, developmental biology, and bacterial metabolic processes, in which each individual element obeys a relatively simple hysteresis law (a non-ideal relay). Assuming that hysteresis thresholds fluctuate, we consider the arising reaction-diffusion system. In this case, the spatial variable corresponds to the hysteresis threshold. We describe the collective behavior of such a system in terms of the Preisach operator with time-dependent measure which is a part of the solution for the whole system. We prove the well-posedness of the system and discuss the long-term behavior of solutions.
@article{TM_2013_283_a6,
     author = {Pavel Gurevich and Dmitrii Rachinskii},
     title = {Well-posedness of parabolic equations containing hysteresis with diffusive thresholds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {92--114},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a6/}
}
TY  - JOUR
AU  - Pavel Gurevich
AU  - Dmitrii Rachinskii
TI  - Well-posedness of parabolic equations containing hysteresis with diffusive thresholds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 92
EP  - 114
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a6/
LA  - en
ID  - TM_2013_283_a6
ER  - 
%0 Journal Article
%A Pavel Gurevich
%A Dmitrii Rachinskii
%T Well-posedness of parabolic equations containing hysteresis with diffusive thresholds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 92-114
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a6/
%G en
%F TM_2013_283_a6
Pavel Gurevich; Dmitrii Rachinskii. Well-posedness of parabolic equations containing hysteresis with diffusive thresholds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 92-114. http://geodesic.mathdoc.fr/item/TM_2013_283_a6/

[1] Alt H.W., “On the thermostat problem”, Control Cybern., 14 (1985), 171–193 | MR

[2] Ashyralyev A., Sobolevskii P.E., Well-posedness of parabolic difference equations, Birkhäuser, Basel, 1994 | MR

[3] Aumann R.J., Maschler M.B., Repeated games with incomplete information, MIT Press, Cambridge, MA, 1995 | MR | Zbl

[4] Becskei A., Séraphin B., Serrano L., “Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion”, EMBO J., 20 (2001), 2528–2535 | DOI

[5] Benzer S., “Induced synthesis of enzymes in bacteria analyzed at the cellular level”, Biochim. biophys. acta., 11 (1953), 383–395 | DOI

[6] Cohn M., Horbita K., “Inhibition by glucose of the induced synthesis of the $\beta $-galactoside-enzyme system of Escherichia coli. Analysis of maintenance”, J. Bacteriol, 78 (1959), 601–612

[7] Cohn M., Horbita K., “Analysis of the differentiation and of the heterogeneity within a population of Eschericia coli undergoing induced $\beta $-galactosidase synthesis”, J. Bacteriol, 78 (1959), 613–623

[8] Delbrück M., “Discussion”, Unités biologiques douées de continuité génétique, CNRS, Paris, 1949, 33–35

[9] Dubnau D., Losick R., “Bistability in bacteria”, Mol. Microbiol., 61 (2006), 564–572 | DOI

[10] Friedman G., Gurevich P., McCarthy S., Rachinskii D., “Switching behaviour of two-phenotype bacteria in varying environment”, J. Phys.: Conf. Ser. (to appear)

[11] Gardner T.S., Cantor C.R., Collins J.J., “Construction of a genetic toggle switch in Escherichia coli”, Nature, 403 (2000), 339–342 | DOI

[12] Gurevich P., Tikhomirov S., “Uniqueness of transverse solutions for reaction–diffusion equations with spatially distributed hysteresis”, Nonlinear Anal., Theory Methods Appl., 75 (2012), 6610–6619 | DOI | MR | Zbl

[13] Hoppensteadt F.C., Jäger W., “Pattern formation by bacteria”, Biological growth and spread, Lect. Notes Biomath., 38, Springer, Berlin, 1980, 68–81 | DOI | MR | Zbl

[14] Il'in A.M., Markov B.A., “Nonlinear diffusion equation and Liesegang rings”, Dokl. Math., 84:2 (2011), 730–733 | DOI | MR | Zbl

[15] Kopfová J., “Hysteresis in biological models”, J. Phys.: Conf. Ser., 55 (2006), 130–134 | DOI

[16] Krasnosel'skii M.A., Pokrovskii A.V., Systems with hysteresis, Springer, Berlin, 1989 | MR

[17] Kussell E., Lieber S., “Phenotypic diversity, population growth, and information in fluctuating environments”, Science, 309 (2005), 2075–2078 | DOI

[18] Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N., Linear and quasi-linear equations of parabolic type, Amer. Math. Soc., Providence, RI, 1968 | MR

[19] V.P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR | Zbl

[20] Monod J., “From enzymatic adaptation to allosteric transitions”, Science, 154 (1966), 475–483 | DOI

[21] Novick A., Weiner M., “Enzyme induction as an all-or-none phenomenon”, Proc. Natl. Acad. Sci. USA, 43 (1957), 553–566 | DOI

[22] Ozbudak E.M., Thattai M., Lim H.N., Shraiman B.I., van Oudenaarden A., “Multistability in the lactose utilization network of Escherichia coli”, Nature, 427 (2004), 737–740 | DOI

[23] Pomerening J.R., Sontag E.D., Ferrell J.E., Jr., “Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2”, Nature Cell Biol., 5 (2003), 346–351 | DOI

[24] Rothe F., Global solutions of reaction–diffusion systems, Springer, Berlin, 1984 | MR | Zbl

[25] Smoller J., Shock waves and reaction–diffusion equations, Springer, New York, 1994 | MR | Zbl

[26] Spiegelman S., DeLorenzo W.F., “Substrate stabilization of enzyme-forming capacity during the segregation of a heterozygote”, Proc. Natl. Acad. Sci. USA, 38 (1952), 583–592 | DOI

[27] Thattai M., van Oudenaarden A., “Stochastic gene expression in fluctuating environments”, Genetics, 167 (2004), 523–530 | DOI

[28] Visintin A., “Evolution problems with hysteresis in the source term”, SIAM J. Math. Anal., 17 (1986), 1113–1138 | DOI | MR | Zbl

[29] Winge Ö., Roberts C., “Inheritance of enzymatic characters in yeasts, and the phenomenon of long-term adaptation”, C. r. trav. Lab. Carlsberg. Sér. Physiol., 24 (1948), 263–315

[30] Wolf D.M., Arkin A.P., “Motifs, modules and games in bacteria”, Curr. Opin. Microbiol., 6 (2003), 125–134 | DOI

[31] Wolf D.M., Vazirani V.V., Arkin A.P., “Diversity in times of adversity: probabilistic strategies in microbial survival games”, J. Theor. Biol., 234 (2005), 227–253 | DOI | MR