Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_283_a6, author = {Pavel Gurevich and Dmitrii Rachinskii}, title = {Well-posedness of parabolic equations containing hysteresis with diffusive thresholds}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {92--114}, publisher = {mathdoc}, volume = {283}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a6/} }
TY - JOUR AU - Pavel Gurevich AU - Dmitrii Rachinskii TI - Well-posedness of parabolic equations containing hysteresis with diffusive thresholds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 92 EP - 114 VL - 283 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_283_a6/ LA - en ID - TM_2013_283_a6 ER -
%0 Journal Article %A Pavel Gurevich %A Dmitrii Rachinskii %T Well-posedness of parabolic equations containing hysteresis with diffusive thresholds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 92-114 %V 283 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_283_a6/ %G en %F TM_2013_283_a6
Pavel Gurevich; Dmitrii Rachinskii. Well-posedness of parabolic equations containing hysteresis with diffusive thresholds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 92-114. http://geodesic.mathdoc.fr/item/TM_2013_283_a6/
[1] Alt H.W., “On the thermostat problem”, Control Cybern., 14 (1985), 171–193 | MR
[2] Ashyralyev A., Sobolevskii P.E., Well-posedness of parabolic difference equations, Birkhäuser, Basel, 1994 | MR
[3] Aumann R.J., Maschler M.B., Repeated games with incomplete information, MIT Press, Cambridge, MA, 1995 | MR | Zbl
[4] Becskei A., Séraphin B., Serrano L., “Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion”, EMBO J., 20 (2001), 2528–2535 | DOI
[5] Benzer S., “Induced synthesis of enzymes in bacteria analyzed at the cellular level”, Biochim. biophys. acta., 11 (1953), 383–395 | DOI
[6] Cohn M., Horbita K., “Inhibition by glucose of the induced synthesis of the $\beta $-galactoside-enzyme system of Escherichia coli. Analysis of maintenance”, J. Bacteriol, 78 (1959), 601–612
[7] Cohn M., Horbita K., “Analysis of the differentiation and of the heterogeneity within a population of Eschericia coli undergoing induced $\beta $-galactosidase synthesis”, J. Bacteriol, 78 (1959), 613–623
[8] Delbrück M., “Discussion”, Unités biologiques douées de continuité génétique, CNRS, Paris, 1949, 33–35
[9] Dubnau D., Losick R., “Bistability in bacteria”, Mol. Microbiol., 61 (2006), 564–572 | DOI
[10] Friedman G., Gurevich P., McCarthy S., Rachinskii D., “Switching behaviour of two-phenotype bacteria in varying environment”, J. Phys.: Conf. Ser. (to appear)
[11] Gardner T.S., Cantor C.R., Collins J.J., “Construction of a genetic toggle switch in Escherichia coli”, Nature, 403 (2000), 339–342 | DOI
[12] Gurevich P., Tikhomirov S., “Uniqueness of transverse solutions for reaction–diffusion equations with spatially distributed hysteresis”, Nonlinear Anal., Theory Methods Appl., 75 (2012), 6610–6619 | DOI | MR | Zbl
[13] Hoppensteadt F.C., Jäger W., “Pattern formation by bacteria”, Biological growth and spread, Lect. Notes Biomath., 38, Springer, Berlin, 1980, 68–81 | DOI | MR | Zbl
[14] Il'in A.M., Markov B.A., “Nonlinear diffusion equation and Liesegang rings”, Dokl. Math., 84:2 (2011), 730–733 | DOI | MR | Zbl
[15] Kopfová J., “Hysteresis in biological models”, J. Phys.: Conf. Ser., 55 (2006), 130–134 | DOI
[16] Krasnosel'skii M.A., Pokrovskii A.V., Systems with hysteresis, Springer, Berlin, 1989 | MR
[17] Kussell E., Lieber S., “Phenotypic diversity, population growth, and information in fluctuating environments”, Science, 309 (2005), 2075–2078 | DOI
[18] Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N., Linear and quasi-linear equations of parabolic type, Amer. Math. Soc., Providence, RI, 1968 | MR
[19] V.P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR | Zbl
[20] Monod J., “From enzymatic adaptation to allosteric transitions”, Science, 154 (1966), 475–483 | DOI
[21] Novick A., Weiner M., “Enzyme induction as an all-or-none phenomenon”, Proc. Natl. Acad. Sci. USA, 43 (1957), 553–566 | DOI
[22] Ozbudak E.M., Thattai M., Lim H.N., Shraiman B.I., van Oudenaarden A., “Multistability in the lactose utilization network of Escherichia coli”, Nature, 427 (2004), 737–740 | DOI
[23] Pomerening J.R., Sontag E.D., Ferrell J.E., Jr., “Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2”, Nature Cell Biol., 5 (2003), 346–351 | DOI
[24] Rothe F., Global solutions of reaction–diffusion systems, Springer, Berlin, 1984 | MR | Zbl
[25] Smoller J., Shock waves and reaction–diffusion equations, Springer, New York, 1994 | MR | Zbl
[26] Spiegelman S., DeLorenzo W.F., “Substrate stabilization of enzyme-forming capacity during the segregation of a heterozygote”, Proc. Natl. Acad. Sci. USA, 38 (1952), 583–592 | DOI
[27] Thattai M., van Oudenaarden A., “Stochastic gene expression in fluctuating environments”, Genetics, 167 (2004), 523–530 | DOI
[28] Visintin A., “Evolution problems with hysteresis in the source term”, SIAM J. Math. Anal., 17 (1986), 1113–1138 | DOI | MR | Zbl
[29] Winge Ö., Roberts C., “Inheritance of enzymatic characters in yeasts, and the phenomenon of long-term adaptation”, C. r. trav. Lab. Carlsberg. Sér. Physiol., 24 (1948), 263–315
[30] Wolf D.M., Arkin A.P., “Motifs, modules and games in bacteria”, Curr. Opin. Microbiol., 6 (2003), 125–134 | DOI
[31] Wolf D.M., Vazirani V.V., Arkin A.P., “Diversity in times of adversity: probabilistic strategies in microbial survival games”, J. Theor. Biol., 234 (2005), 227–253 | DOI | MR