Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_283_a4, author = {V. A. Galaktionov}, title = {The {KPP-problem} and $\log t$-front shift for higher-order semilinear parabolic equations}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {49--79}, publisher = {mathdoc}, volume = {283}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a4/} }
TY - JOUR AU - V. A. Galaktionov TI - The KPP-problem and $\log t$-front shift for higher-order semilinear parabolic equations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 49 EP - 79 VL - 283 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_283_a4/ LA - en ID - TM_2013_283_a4 ER -
V. A. Galaktionov. The KPP-problem and $\log t$-front shift for higher-order semilinear parabolic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 49-79. http://geodesic.mathdoc.fr/item/TM_2013_283_a4/
[1] Barenblatt G.I., Similarity, self-similarity, and intermediate asymptotics, Consultants Bureau, New York, 1979 | MR | Zbl
[2] Bertozzi A.L., Münch A., Shearer M., Zumbrun K., “Stability of compressive and undercompressive thin film travelling waves”, Eur. J. Appl. Math., 12 (2001), 253–291 | DOI | MR | Zbl
[3] Bramson M., Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. AMS, no. 285, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl
[4] Brezis H., Peletier L.A., Terman D., “A very singular solution of the heat equation with absorption”, Arch. Ration. Mech. Anal., 95 (1986), 185–209 | DOI | MR | Zbl
[5] Budd C.J., Galaktionov V.A., Williams J.F., “Self-similar blow-up in higher-order semilinear parabolic equations”, SIAM J. Appl. Math., 64 (2004), 1775–1809 | DOI | MR | Zbl
[6] Busca J., Jendoubi M.A., Poláčik P., “Convergence to equilibrium for semilinear parabolic problems in $\mathbb R^N$”, Commun. Partial Diff. Eqns., 27 (2002), 1793–1814 | DOI | MR | Zbl
[7] Chill R., “On the Łojasiewicz–Simon gradient inequality”, J. Funct. Anal., 201 (2003), 572–601 | DOI | MR | Zbl
[8] Coddington E.A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955 | MR | Zbl
[9] Collet P., Eckmann J.-P., Instabilities and fronts in extended systems, Princeton Univ. Press, Princeton, NJ, 1990 | MR | Zbl
[10] Coulon A.-C., Roquejoffre J.-M., “Transition between linear and exponential propagation in Fisher–KPP type reaction–diffusion equations”, Commun. Partial Diff. Eqns., 37 (2012), 2029–2049, arXiv: 1111.0408 [math.AP] | DOI | MR | Zbl
[11] Ebert U., van Saarloos W., “Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts”, Physica D, 146 (2000), 1–99 | DOI | MR | Zbl
[12] Egorov Yu.V., Galaktionov V.A., Kondratiev V.A., Pohozaev S.I., “On the necessary conditions of existence to a quasilinear inequality in the half-space”, C. r. Acad. sci. Paris. Sér. 1: Math., 330 (2000), 93–98 | DOI | MR | Zbl
[13] Egorov Yu.V., Galaktionov V.A., Kondratiev V.A., Pohozaev S.I., “Global solutions of higher-order semilinear parabolic equations in the supercritical range”, Adv. Diff. Eqns., 9 (2004), 1009–1038 | MR | Zbl
[14] Eidelman S.D., Parabolic systems, North-Holland, Amsterdam, 1969 | MR | Zbl
[15] Evans J.D., Galaktionov V.A., King J.R., “Source-type solutions of the fourth-order unstable thin film equation”, Eur. J. Appl. Math., 18 (2007), 273–321 | DOI | MR | Zbl
[16] Evans J.D., Galaktionov V.A., Williams J.F., “Blow-up and global asymptotics of the limit unstable Cahn–Hilliard equation”, SIAM J. Math. Anal., 38 (2006), 64–102 | DOI | MR | Zbl
[17] Feireisl E., Issard-Roch F., Petzeltová H., “A non-smooth version of the Lojasiewicz–Simon theorem with applications to non-local phase-field systems”, J. Diff. Eqns., 199 (2004), 1–21 | DOI | MR | Zbl
[18] Friedman A., “On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial differential equations”, J. Math. Mech., 7 (1958), 43–59 | MR | Zbl
[19] Galaktionov V.A., Comments on the magic exponent $\frac 32$ in Kolmogorov–Petrovskii–Piskunov problem, Discussion proposal, Dept. Math. Sci. Univ. Bath, Bath, Dec. 1995
[20] Galaktionov V.A., “On a spectrum of blow-up patterns for a higher-order semilinear parabolic equation”, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 457:2011 (2001), 1623–1643 | DOI | MR | Zbl
[21] Galaktionov V.A., “Critical global asymptotics in higher-order semilinear parabolic equations”, Int. J. Math. Math. Sci., 2003, no. 60, 3809–3825 | DOI | MR | Zbl
[22] Galaktionov V.A., Geometric Sturmian theory of nonlinear parabolic equations and applications, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl
[23] Galaktionov V.A., “On interfaces and oscillatory solutions of higher-order semilinear parabolic equations with non-Lipschitz nonlinearities”, Stud. Appl. Math., 117 (2006), 353–389 | DOI | MR | Zbl
[24] Galaktionov V.A., Towards the KPP-problem and $\log t$-front shift for higher-order nonlinear PDEs. II: Quasilinear bi- and tri-harmonic equations, E-print, 2012, arXiv: 1210.5063 [math.AP]
[25] Galaktionov V.A., Towards the KPP-problem and $\log t$-front shift for higher-order nonlinear PDEs. III: Dispersion and hyperbolic equations, E-print, 2012, arXiv: 1210.5084 [math.AP]
[26] Galaktionov V.A., Kurdyumov S.P., Samarskii A.A., “On asymptotic “eigenfunctions” of the Cauchy problem for a nonlinear parabolic equation”, Math. USSR. Sb., 54 (1986), 421–455 | DOI | MR | Zbl
[27] Galaktionov V.A., Mitidieri E., Pokhozhaev S.I., “Variational approach to complicated similarity solutions of higher order nonlinear evolution partial differential equations”, Sobolev spaces in mathematics. V. 2: Applications in analysis and partial differential equations, Int. Math. Ser., 9, eds. V. Maz'ya, Springer, New York, 2009, 147–197, arXiv: 0902.1425 [math.AP] | DOI | MR | Zbl
[28] Galaktionov V.A., Mitidieri E., Pohozaev S.I., “Variational approach to complicated similarity solutions of higher-order nonlinear PDEs. II”, Nonlinear Anal., Real World Appl., 12 (2011), 2435–2466, arXiv: 1103.2643 [math.AP] | DOI | MR | Zbl
[29] Galaktionov V.A., Pohozaev S.I., “Existence and blow-up for higher-order semilinear parabolic equations: Majorizing order-preserving operators”, Indiana Univ. Math. J., 51 (2002), 1321–1338 | DOI | MR | Zbl
[30] Galaktionov V.A., Pohozaev S.I., Shishkov A.E., “Convergence in gradient systems with branching of equilibria”, Sb. Math., 198 (2007), 817–838, arXiv: 0902.0286 [math.AP] | DOI | DOI | MR | Zbl
[31] Galaktionov V.A., Vazquez J.L., “Asymptotic behaviour of nonlinear parabolic equations with critical exponents. A dynamical systems approach”, J. Funct. Anal., 100 (1991), 435–462 | DOI | MR | Zbl
[32] Galaktionov V.A., Vazquez J.L., “Extinction for a quasilinear heat equation with absorption. II: A dynamical systems approach”, Commun. Partial Diff. Eqns., 19 (1994), 1107–1137 | DOI | MR | Zbl
[33] Galaktionov V.A., Vázquez J.L., A stability technique for evolution partial differential equations: A dynamical systems approach, Birkhäuser, Boston, MA, 2004 | MR | Zbl
[34] Gao H., Liu C., “Instability of traveling waves of the convective–diffusive Cahn–Hilliard equation”, Chaos Solitons Fractals, 20 (2004), 253–258 | DOI | MR | Zbl
[35] Gärtner J., “Location of wave fronts for the multi-dimensional K-P-P equation and Brownian first exit densities”, Math. Nachr., 105 (1982), 317–351 | DOI | MR
[36] Gmira A., Veron L., “Large time behaviour of the solutions of a semilinear parabolic equation in $\mathbb R^N$”, J. Diff. Eqns., 53 (1984), 258–276 | DOI | MR | Zbl
[37] Hale J.K., Raugel G., “Convergence in gradient-like systems with applications to PDE”, Z. angew. Math. Phys., 43 (1992), 63–124 | DOI | MR | Zbl
[38] Hamel F., Roques L., “Fast propagation for KPP equations with slowly decaying initial conditions”, J. Diff. Eqns., 249 (2010), 1726–1745, arXiv: 0906.3164 [math.AP] | DOI | MR | Zbl
[39] Haraux A., Jendoubi M.A., “Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity”, Asymptotic Anal., 26 (2001), 21–36 | MR | Zbl
[40] Haraux A., Jendoubi M.A., “The Łojasiewicz gradient inequality in the infinite-dimensional Hilbert space framework”, J. Funct. Anal., 260 (2011), 2826–2842 | DOI | MR | Zbl
[41] Kalies W.D., Kwapisz J., VandenBerg J.B., VanderVorst R.C.A.M., “Homotopy classes for stable periodic and chaotic patterns in fourth-order Hamiltonian systems”, Commun. Math. Phys., 214 (2000), 573–592 | DOI | MR | Zbl
[42] Kamenomostskaya S., “The asymptotic behaviour of the solution of the filtration equation”, Isr. J. Math., 14 (1973), 76–87 | DOI | MR | Zbl
[43] Kamin S., Peletier L.A., “Large time behaviour of solutions of the heat equation with absorption”, Ann. Sc. Norm. Pisa. Cl. Sci. Ser. 4, 12 (1985), 393–408 | MR | Zbl
[44] Kolmogorov A.N., “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers”, Proc. R. Soc. London A, 434:1890 (1991), 9–13 | DOI | MR | Zbl
[45] Kolmogoroff A., Petrovsky I., Piscounoff N., “Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem”, Dynamics of curved fronts, ed. P. Pelcé, Academic, Boston, MA, 1988, 105–130 | DOI | MR
[46] Li Z., Liu C., “On the nonlinear instability of traveling waves for a sixth-order parabolic equation”, Abstr. Appl. Anal., 2012, 739156 | MR | Zbl
[47] Lunardi A., Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser, Basel, 1995 | MR | Zbl
[48] Naimark M.A., Linear differential operators, Part 1, Frederick Ungar Publ., New York, 1967 | MR | Zbl
[49] Obukhov A.M., “O raspredelenii energii v spektre turbulentnogo potoka”, DAN SSSR, 32:1 (1941), 22–24 | MR
[50] Peletier L.A., Troy W.C., Spatial patterns: Higher order models in physics and mechanics, Birkhäuser, Boston, MA, 2001 | MR
[51] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Blow-up in quasilinear parabolic equations, W. de Gruyter, Berlin, 1995 | MR | Zbl
[52] Strauss W., Wang G., “Instability of traveling waves of the Kuramoto–Sivashinsky equation”, Frontiers in mathematical analysis and numerical methods, World Sci., River Edge, NJ, 2004, 253–266 | DOI | MR
[53] van den Berg J.B., Vandervorst R.C., “Stable patterns for fourth-order parabolic equations”, Duke Math. J., 115 (2002), 513–558 | DOI | MR | Zbl
[54] Vergara V., “Convergence to steady states of solutions to nonlinear integral evolution equations”, Calc. Var. Partial Diff. Eqns., 40 (2011), 319–334 | DOI | MR | Zbl
[55] Yanagida E., “Irregular behavior of solutions for Fisher's equation”, J. Dyn. Diff. Eqns., 19 (2007), 895–914 | DOI | MR | Zbl
[56] Yassine H., “Asymptotic behavior and decay rate estimates for a class of semilinear evolution equations of mixed order”, Nonlinear Anal., Theory Methods Appl., 74 (2011), 2309–2326 | DOI | MR | Zbl
[57] Zelenyak T.I., “Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable”, Diff. Eqns., 4 (1972), 17–22 | Zbl | Zbl