Differentiability points of functions in weighted Sobolev spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 257-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider weighted Sobolev spaces $W_p^l$, $l\in\mathbb N$, with weighted $L_p$-norm of higher derivatives on an $n$-dimensional cube-type domain. The weight $\gamma$ depends on the distance to an $(n-d)$-dimensional face $E$ of the cube. We establish the property of uniform $L_p$-differentiability of functions in these spaces on the face $E$ of an appropriate dimension. This property consists in the possibility of $L_p$-approximation of the values of a function near $E$ by a polynomial of degree $l-1$.
@article{TM_2013_283_a16,
     author = {A. I. Tyulenev},
     title = {Differentiability points of functions in weighted {Sobolev} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {257--266},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a16/}
}
TY  - JOUR
AU  - A. I. Tyulenev
TI  - Differentiability points of functions in weighted Sobolev spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 257
EP  - 266
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a16/
LA  - ru
ID  - TM_2013_283_a16
ER  - 
%0 Journal Article
%A A. I. Tyulenev
%T Differentiability points of functions in weighted Sobolev spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 257-266
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a16/
%G ru
%F TM_2013_283_a16
A. I. Tyulenev. Differentiability points of functions in weighted Sobolev spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 257-266. http://geodesic.mathdoc.fr/item/TM_2013_283_a16/

[1] Chua S.-K., “Extension theorems on weighted Sobolev spaces”, Indiana Univ. Math. J., 41:4 (1992), 1027–1076 | DOI | MR | Zbl

[2] Zhikov V.V., “O vesovykh sobolevskikh prostranstvakh”, Mat. sb., 189:8 (1998), 27–58 | DOI | MR | Zbl

[3] Burenkov V.I., Sobolev spaces on domains, Teubner-Texte Math., 137, Teubner, Stuttgart, 1998 | DOI | MR | Zbl

[4] Stein I.M., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[5] Fröhlich A., “The Stokes operator in weighted $L^q$-spaces. I: Weighted estimates for the Stokes resolvent problem in a half space”, J. Math. Fluid Mech., 5:2 (2003), 166–199 | MR | Zbl

[6] Poulsen E.T., “Boundary values in function spaces”, Math. Scand., 10 (1962), 45–52 | MR | Zbl

[7] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl