Differentiability points of functions in weighted Sobolev spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 257-266
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider weighted Sobolev spaces $W_p^l$, $l\in\mathbb N$, with weighted $L_p$-norm of higher derivatives on an $n$-dimensional cube-type domain. The weight $\gamma$ depends on the distance to an $(n-d)$-dimensional face $E$ of the cube. We establish the property of uniform $L_p$-differentiability of functions in these spaces on the face $E$ of an appropriate dimension. This property consists in the possibility of $L_p$-approximation of the values of a function near $E$ by a polynomial of degree $l-1$.
@article{TM_2013_283_a16,
author = {A. I. Tyulenev},
title = {Differentiability points of functions in weighted {Sobolev} spaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {257--266},
publisher = {mathdoc},
volume = {283},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a16/}
}
A. I. Tyulenev. Differentiability points of functions in weighted Sobolev spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 257-266. http://geodesic.mathdoc.fr/item/TM_2013_283_a16/