Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_283_a11, author = {V. Zh. Sakbaev}, title = {Gradient blow-up of solutions to the {Cauchy} problem for the {Schr\"odinger} equation}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {171--187}, publisher = {mathdoc}, volume = {283}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a11/} }
TY - JOUR AU - V. Zh. Sakbaev TI - Gradient blow-up of solutions to the Cauchy problem for the Schr\"odinger equation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 171 EP - 187 VL - 283 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_283_a11/ LA - ru ID - TM_2013_283_a11 ER -
V. Zh. Sakbaev. Gradient blow-up of solutions to the Cauchy problem for the Schr\"odinger equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 171-187. http://geodesic.mathdoc.fr/item/TM_2013_283_a11/
[1] Bogachev V.I., Krylov N.V., Rëkner M., “Ellipticheskie i parabolicheskie uravneniya dlya mer”, UMN, 64:6 (2009), 5–116 | DOI | MR | Zbl
[2] Zhikov V.V., “K probleme predelnogo perekhoda v divergentnykh neravnomerno ellipticheskikh uravneniyakh”, Funkts. analiz i ego pril., 35:1 (2001), 23–39 | DOI | MR | Zbl
[3] Zakharov V.E., Shabat A.B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[4] Korpusov M.O., Sveshnikov A.G., Nelineinyi funktsionalnyi analiz i matematicheskoe modelirovanie v fizike: Metody issledovaniya nelineinykh operatorov, URSS, M., 2011
[5] Kruzhkov S.N., Nelineinye uravneniya s chastnymi proizvodnymi: Lektsii. Ch. 2: Uravneniya pervogo poryadka, MGU, M., 1970
[6] Kudryashov O.I., “Ob osobennostyakh reshenii nelineinykh uravnenii tipa Ginzburga–Landau”, Sib. mat. zhurn., 16:4 (1975), 866–868 | MR | Zbl
[7] Mitidieri E., Pokhozhaev S.I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR | Zbl
[8] Ogun Dzh.O., Orlov Yu.N., Sakbaev V.Zh., O preobrazovanii prostranstva nachalnykh dannykh dlya zadachi Koshi s osobennostyami resheniya tipa vzryva, Preprint No87, IPM im. M.V. Keldysha RAN, M., 2012
[9] Oleinik O.A., Radkevich E.V., Uravneniya s neotritsatelnoi kharakteristicheskoi formoi, Izd-vo MGU, M., 2010
[10] Pokhozhaev S.I., “Ob apriornykh otsenkakh i gradientnykh katastrofakh gladkikh reshenii giperbolicheskikh sistem zakonov sokhraneniya”, Tr. MIAN, 243, 2003, 257–288 | MR | Zbl
[11] Sakbaev V.Zh., “Ob usrednenii kvantovykh dinamicheskikh polugrupp”, TMF, 164:3 (2010), 455–463 | DOI | Zbl
[12] Sakbaev V.Zh., Zadacha Koshi dlya lineinogo differentsialnogo uravneniya s vyrozhdeniem i usrednenie approksimiruyuschikh ee regulyarizatsii, Sovr. matematika. Fund. napr., 43, Ros. un-t druzhby narodov, M., 2012 | MR
[13] Sakbaev V.Zh., “Razrushenie reshenii zadachi Koshi dlya nelineinogo uravneniya Shrëdingera”, Vestn. Sam. gos. tekhn. un-ta. Fiz.-mat. nauki, 2013, no. 1, 159–171 | DOI
[14] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[15] Baras P., Goldstein J.A., “The heat equation with a singular potential”, Trans. Amer. Math. Soc., 284 (1984), 121–139 | DOI | MR | Zbl
[16] Fichera G., “On a unified theory of boundary value problems for elliptic–parabolic equations of second order”, Boundary problems in differential equations, Univ. Wisconsin Press, Madison, 1960, 97–120 | MR
[17] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha }$”, J. Fac. Sci. Univ. Tokio. Sec. IA, 13 (1966), 109–124 | MR | Zbl
[18] Galaktionov V.A., Kamotski I.V., “On nonexistence of Baras–Goldstein type for higher-order parabolic eqations with singular potentials”, Trans. Amer. Math. Soc., 362:8 (2010), 4117–4136 | DOI | MR | Zbl
[19] Galaktionov V.A., Vazquez J.L., “Continuation of blowup solutions of nonlinear heat equations in several space dimensions”, Commun. Pure Appl. Math., 50:1 (1997), 1–67 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] Ginibre J., Velo G., “On a class of nonlinear Schrödinger equations. I: The Cauchy problem, general case”, J. Funct. Anal., 32 (1979), 1–32 | DOI | MR | Zbl
[21] Glassey R.T., “On the blowing up of solutions to the Cauchy Problem for nonlinear Schrödinger equations”, J. Math. Phys., 18 (1977), 1794–1797 | DOI | MR | Zbl
[22] Kavian O., “A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, Trans. Amer. Math. Soc., 299:1 (1987), 192–203 | MR
[23] Merle F., Tsutsumi Y., “$L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity”, J. Diff. Eqns., 84:2 (1990), 205–214 | DOI | MR | Zbl
[24] Mizoguchi N., Quirós F., Vázquez J.L., “Multiple blow-up for a porous medium equation with reaction”, Math. Ann., 350:4 (2011), 801–827 | DOI | MR | Zbl
[25] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl
[26] Sakbaev V.Zh., “Stochastic properties of degenerated quantum systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:1 (2010), 65–85 | DOI | MR | Zbl
[27] Sakbaev V.Zh., “On the variational description of the trajectories of averaging quantum dynamical maps”, p-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 115–129 | DOI | MR | Zbl
[28] Wei S.W., Li Y., “Generalized sharp Hardy type and Caffarelli–Kohn–Nirenberg type inequalities on Riemannian manifolds”, Tamkang J. Math., 40:4 (2009), 401–413 | MR | Zbl
[29] Zhidkov P.E., Korteweg–de Vries and nonlinear Schrödinger equations: Qualitative theory, Lect. Notes Math., 1756, Springer, Berlin, 2001 | MR | Zbl