Gradient blow-up of solutions to the Cauchy problem for the Schr\"odinger equation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 171-187.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of nonlinear Schrödinger operators with singular coefficients is studied. For this class, necessary and sufficient conditions are established for the existence of initial data such that the corresponding solution to the Cauchy problem blows up in finite time. A regularization procedure for the Cauchy problem is proposed, and the limit behavior of the sequence of solutions to the regularized problems is analyzed.
@article{TM_2013_283_a11,
     author = {V. Zh. Sakbaev},
     title = {Gradient blow-up of solutions to the {Cauchy} problem for the {Schr\"odinger} equation},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {171--187},
     publisher = {mathdoc},
     volume = {283},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_283_a11/}
}
TY  - JOUR
AU  - V. Zh. Sakbaev
TI  - Gradient blow-up of solutions to the Cauchy problem for the Schr\"odinger equation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 171
EP  - 187
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_283_a11/
LA  - ru
ID  - TM_2013_283_a11
ER  - 
%0 Journal Article
%A V. Zh. Sakbaev
%T Gradient blow-up of solutions to the Cauchy problem for the Schr\"odinger equation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 171-187
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_283_a11/
%G ru
%F TM_2013_283_a11
V. Zh. Sakbaev. Gradient blow-up of solutions to the Cauchy problem for the Schr\"odinger equation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and equations of mathematical physics, Tome 283 (2013), pp. 171-187. http://geodesic.mathdoc.fr/item/TM_2013_283_a11/

[1] Bogachev V.I., Krylov N.V., Rëkner M., “Ellipticheskie i parabolicheskie uravneniya dlya mer”, UMN, 64:6 (2009), 5–116 | DOI | MR | Zbl

[2] Zhikov V.V., “K probleme predelnogo perekhoda v divergentnykh neravnomerno ellipticheskikh uravneniyakh”, Funkts. analiz i ego pril., 35:1 (2001), 23–39 | DOI | MR | Zbl

[3] Zakharov V.E., Shabat A.B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[4] Korpusov M.O., Sveshnikov A.G., Nelineinyi funktsionalnyi analiz i matematicheskoe modelirovanie v fizike: Metody issledovaniya nelineinykh operatorov, URSS, M., 2011

[5] Kruzhkov S.N., Nelineinye uravneniya s chastnymi proizvodnymi: Lektsii. Ch. 2: Uravneniya pervogo poryadka, MGU, M., 1970

[6] Kudryashov O.I., “Ob osobennostyakh reshenii nelineinykh uravnenii tipa Ginzburga–Landau”, Sib. mat. zhurn., 16:4 (1975), 866–868 | MR | Zbl

[7] Mitidieri E., Pokhozhaev S.I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR | Zbl

[8] Ogun Dzh.O., Orlov Yu.N., Sakbaev V.Zh., O preobrazovanii prostranstva nachalnykh dannykh dlya zadachi Koshi s osobennostyami resheniya tipa vzryva, Preprint No87, IPM im. M.V. Keldysha RAN, M., 2012

[9] Oleinik O.A., Radkevich E.V., Uravneniya s neotritsatelnoi kharakteristicheskoi formoi, Izd-vo MGU, M., 2010

[10] Pokhozhaev S.I., “Ob apriornykh otsenkakh i gradientnykh katastrofakh gladkikh reshenii giperbolicheskikh sistem zakonov sokhraneniya”, Tr. MIAN, 243, 2003, 257–288 | MR | Zbl

[11] Sakbaev V.Zh., “Ob usrednenii kvantovykh dinamicheskikh polugrupp”, TMF, 164:3 (2010), 455–463 | DOI | Zbl

[12] Sakbaev V.Zh., Zadacha Koshi dlya lineinogo differentsialnogo uravneniya s vyrozhdeniem i usrednenie approksimiruyuschikh ee regulyarizatsii, Sovr. matematika. Fund. napr., 43, Ros. un-t druzhby narodov, M., 2012 | MR

[13] Sakbaev V.Zh., “Razrushenie reshenii zadachi Koshi dlya nelineinogo uravneniya Shrëdingera”, Vestn. Sam. gos. tekhn. un-ta. Fiz.-mat. nauki, 2013, no. 1, 159–171 | DOI

[14] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[15] Baras P., Goldstein J.A., “The heat equation with a singular potential”, Trans. Amer. Math. Soc., 284 (1984), 121–139 | DOI | MR | Zbl

[16] Fichera G., “On a unified theory of boundary value problems for elliptic–parabolic equations of second order”, Boundary problems in differential equations, Univ. Wisconsin Press, Madison, 1960, 97–120 | MR

[17] Fujita H., “On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^{1+\alpha }$”, J. Fac. Sci. Univ. Tokio. Sec. IA, 13 (1966), 109–124 | MR | Zbl

[18] Galaktionov V.A., Kamotski I.V., “On nonexistence of Baras–Goldstein type for higher-order parabolic eqations with singular potentials”, Trans. Amer. Math. Soc., 362:8 (2010), 4117–4136 | DOI | MR | Zbl

[19] Galaktionov V.A., Vazquez J.L., “Continuation of blowup solutions of nonlinear heat equations in several space dimensions”, Commun. Pure Appl. Math., 50:1 (1997), 1–67 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[20] Ginibre J., Velo G., “On a class of nonlinear Schrödinger equations. I: The Cauchy problem, general case”, J. Funct. Anal., 32 (1979), 1–32 | DOI | MR | Zbl

[21] Glassey R.T., “On the blowing up of solutions to the Cauchy Problem for nonlinear Schrödinger equations”, J. Math. Phys., 18 (1977), 1794–1797 | DOI | MR | Zbl

[22] Kavian O., “A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, Trans. Amer. Math. Soc., 299:1 (1987), 192–203 | MR

[23] Merle F., Tsutsumi Y., “$L^2$ concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity”, J. Diff. Eqns., 84:2 (1990), 205–214 | DOI | MR | Zbl

[24] Mizoguchi N., Quirós F., Vázquez J.L., “Multiple blow-up for a porous medium equation with reaction”, Math. Ann., 350:4 (2011), 801–827 | DOI | MR | Zbl

[25] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983 | MR | Zbl

[26] Sakbaev V.Zh., “Stochastic properties of degenerated quantum systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:1 (2010), 65–85 | DOI | MR | Zbl

[27] Sakbaev V.Zh., “On the variational description of the trajectories of averaging quantum dynamical maps”, p-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 115–129 | DOI | MR | Zbl

[28] Wei S.W., Li Y., “Generalized sharp Hardy type and Caffarelli–Kohn–Nirenberg type inequalities on Riemannian manifolds”, Tamkang J. Math., 40:4 (2009), 401–413 | MR | Zbl

[29] Zhidkov P.E., Korteweg–de Vries and nonlinear Schrödinger equations: Qualitative theory, Lect. Notes Math., 1756, Springer, Berlin, 2001 | MR | Zbl