Random walk in mixed random environment without uniform ellipticity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 114-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a random walk in random environment on $\mathbb Z_+$. The random environment is not homogeneous in law, but is a mixture of two kinds of site, one in asymptotically vanishing proportion. The two kinds of site are (i) points endowed with probabilities drawn from a symmetric distribution with heavy tails at 0 and 1, and (ii) “fast points” with a fixed systematic drift. Without these fast points, the model is related to the diffusion in heavy-tailed (“stable”) random potential studied by Schumacher and Singh; the fast points perturb that model. The two components compete to determine the behaviour of the random walk; we identify phase transitions in terms of the model parameters. We give conditions for recurrence and transience and prove almost sure bounds for the trajectories of the walk.
@article{TM_2013_282_a9,
     author = {Ostap Hryniv and Mikhail V. Menshikov and Andrew R. Wade},
     title = {Random walk in mixed random environment without uniform ellipticity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {114--131},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a9/}
}
TY  - JOUR
AU  - Ostap Hryniv
AU  - Mikhail V. Menshikov
AU  - Andrew R. Wade
TI  - Random walk in mixed random environment without uniform ellipticity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 114
EP  - 131
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a9/
LA  - en
ID  - TM_2013_282_a9
ER  - 
%0 Journal Article
%A Ostap Hryniv
%A Mikhail V. Menshikov
%A Andrew R. Wade
%T Random walk in mixed random environment without uniform ellipticity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 114-131
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a9/
%G en
%F TM_2013_282_a9
Ostap Hryniv; Mikhail V. Menshikov; Andrew R. Wade. Random walk in mixed random environment without uniform ellipticity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 114-131. http://geodesic.mathdoc.fr/item/TM_2013_282_a9/

[1] Boukhadra O., “Heat-kernel estimates for random walk among random conductances with heavy tail”, Stoch. Processes Appl., 120 (2010), 182–194 | DOI | MR | Zbl

[2] Chung K.L., “On the maximum partial sums of sequences of independent random variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl

[3] Chung K.L., Markov chains with stationary transition probabilities, 2nd ed., Springer, Berlin, 1967 | MR | Zbl

[4] Comets F., Menshikov M., Popov S., “Lyapunov functions for random walks and strings in random environment”, Ann. Probab., 26 (1998), 1433–1445 | DOI | MR | Zbl

[5] Csáki E., “On the lower limits of maxima and minima of Wiener process and partial sums”, Z. Wahrscheinlichkeitstheor. verwandte Geb., 43 (1978), 205–221 | DOI | MR | Zbl

[6] Einmahl U., Mason D.M., “A universal Chung-type law of the iterated logarithm”, Ann. Probab., 22 (1994), 1803–1825 | DOI | MR | Zbl

[7] Fayolle G., Malyshev V.A., Menshikov M.V., Topics in the constructive theory of countable Markov chains, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[8] Feller W., “A limit theorem for random variables with infinite moments”, Amer. J. Math., 68 (1946), 257–262 | DOI | MR | Zbl

[9] Fontes L.R.G., Isopi M., Newman C.M., “Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension”, Ann. Probab., 30 (2002), 579–604 | DOI | MR | Zbl

[10] Gallesco C., Popov S., Schütz G.M., “Localization for a random walk in slowly decreasing random potential”, J. Stat. Phys., 150 (2013), 285–298, arXiv: 1210.1972 | DOI | MR | Zbl

[11] Guo X., Zeitouni O., “Quenched invariance principle for random walks in balanced random environment”, Probab. Theory Relat. Fields, 152 (2012), 207–230 | DOI | MR | Zbl

[12] Hirsch W.M., “A strong law for the maximum cumulative sum of independent random variables”, Commun. Pure Appl. Math., 18 (1965), 109–127 | DOI | MR | Zbl

[13] Hu Y., Shi Z., “The limits of Sinai's simple random walk in random environment”, Ann. Probab., 26 (1998), 1477–1521 | DOI | MR | Zbl

[14] Jain N.C., Pruitt W.E., “Maxima of partial sums of independent random variables”, Z. Wahrscheinlichkeitstheor. verwandte Geb., 27 (1973), 141–151 | DOI | MR | Zbl

[15] Kallenberg O., Foundations of modern probability, 2nd ed., Springer, New York, 2002 | MR | Zbl

[16] Kawazu K., Tamura Y., Tanaka H., “Limit theorems for one-dimensional diffusions and random walks in random environments”, Probab. Theory Relat. Fields, 80 (1989), 501–541 | DOI | MR | Zbl

[17] Klass M.J., Zhang C.-H., “On the almost sure minimal growth rate of partial sum maxima”, Ann. Probab., 22 (1994), 1857–1878 | DOI | MR | Zbl

[18] Menshikov M.V., Wade A.R., “Random walk in random environment with asymptotically zero perturbation”, J. Eur. Math. Soc., 8 (2006), 491–513 | DOI | MR | Zbl

[19] Menshikov M.V., Wade A.R., “Logarithmic speeds for one-dimensional perturbed random walks in random environments”, Stoch. Processes Appl., 118 (2008), 389–416 | DOI | MR | Zbl

[20] Révész P., Random walk in random and non-random environments, 2nd ed., World Scientific, Hackensack, NJ, 2005 | MR | Zbl

[21] Schumacher S., Diffusions with random coefficients, PhD Thesis, Univ. California, Los Angeles, 1984 | Zbl

[22] Schumacher S., “Diffusions with random coefficients”, Particle systems, random media and large deviations, Contemp. Math., 41, ed. R. Durrett, Amer. Math. Soc., Providence, RI, 1985, 351–356 | DOI | MR

[23] Sinai Ya.G., “The limiting behavior of a one-dimensional random walk in a random medium”, Theory Probab. Appl., 27 (1983), 256–268 | DOI | MR

[24] Singh A., “Limiting behavior of a diffusion in an asymptotically stable environment”, Ann. Inst. Henri Poincaré. Probab. Stat., 43 (2007), 101–138 | DOI | MR | Zbl

[25] Singh A., “A slow transient diffusion in a drifted stable potential”, J. Theor. Probab., 20 (2007), 153–166 | DOI | MR | Zbl

[26] Solomon F., “Random walks in a random environment”, Ann. Probab., 3 (1975), 1–31 | DOI | MR | Zbl

[27] Stout W.F., Almost sure convergence, Academic, New York, 1974 | MR | Zbl

[28] Zeitouni O., “Random walks in random environment”, Lectures on probability theory and statistics: Ecole d'Eté de Probabilités de Saint-Flour XXXI — 2001, Lect. Notes Math., 1837, Springer, Berlin, 2004, 189–312 | DOI | MR