The age structure of population-dependent general branching processes in environments with a~high carrying capacity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 98-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

The age structure of populations supercritical below and subcritical above a carrying capacity is investigated, the result being a law of large numbers, as the capacity increases and time passes, provided the starting population is not little.
@article{TM_2013_282_a8,
     author = {K. Hamza and P. Jagers and F. C. Klebaner},
     title = {The age structure of population-dependent general branching processes in environments with a~high carrying capacity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {98--113},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a8/}
}
TY  - JOUR
AU  - K. Hamza
AU  - P. Jagers
AU  - F. C. Klebaner
TI  - The age structure of population-dependent general branching processes in environments with a~high carrying capacity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 98
EP  - 113
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a8/
LA  - en
ID  - TM_2013_282_a8
ER  - 
%0 Journal Article
%A K. Hamza
%A P. Jagers
%A F. C. Klebaner
%T The age structure of population-dependent general branching processes in environments with a~high carrying capacity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 98-113
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a8/
%G en
%F TM_2013_282_a8
K. Hamza; P. Jagers; F. C. Klebaner. The age structure of population-dependent general branching processes in environments with a~high carrying capacity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 98-113. http://geodesic.mathdoc.fr/item/TM_2013_282_a8/

[1] Billingsley P., Convergence of probability measures, 2nd ed., J. Wiley Sons, New York, 1999 | MR | Zbl

[2] Champagnat N., Ferrière R., Méléard S., “Individual-based probabilistic models of adaptive evolution and various scaling approximations”, Seminar on stochastic analysis, random fields and applications V, Ascona (Switzerland), 2005, Prog. Probab., 59, Birkhäuser, Basel, 2008, 75–113 | DOI | MR | Zbl

[3] Champagnat N., Ferrière R., Méléard S., “From individual stochastic processes to macroscopic models in adaptive evolution”, Stoch. Models, 24, Suppl. 1 (2008), 2–44 | DOI | MR | Zbl

[4] Champagnat N., Lambert A., “Adaptive dynamics in logistic branching populations”, Stochastic models in biological sciences, Banach Center Publ., 80, Inst. Math., Pol. Acad. Sci., Warsaw, 2008, 235–244 | DOI | MR | Zbl

[5] Etheridge A.M., An introduction to superprocesses, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[6] Haccou P., Jagers P., Vatutin V.A., Branching processes: Variation, growth, and extinction of populations, Cambridge Univ. Press, Cambridge, 2005 | Zbl

[7] Jagers P., Branching processes with biological applications, J. Wiley Sons, London, 1975 | MR | Zbl

[8] Jagers P., Klebaner F., “Random variation and concentration effects in PCR”, J. Theor. Biol., 224 (2003), 299–304 | DOI | MR

[9] Jagers P., Klebaner F.C., “Population-size-dependent and age-dependent branching processes”, Stoch. Processes Appl., 87 (2000), 235–254 | DOI | MR | Zbl

[10] Jagers P., Klebaner F.C., “Population-size-dependent, age-structured branching processes linger around their carrying capacity”, J. Appl. Probab., 48A (2011), 249–260 | DOI | MR | Zbl

[11] Jakubowski A., “On the Skorokhod topology”, Ann. Inst. Henri Poincaré. Probab. Stat., 22 (1986), 263–285 | MR | Zbl

[12] Kaspi H., Ramanan K., “Law of large numbers limits for many-server queues”, Ann. Appl. Probab., 21 (2011), 33–114 | DOI | MR | Zbl

[13] Klebaner F.C., “Geometric rate of growth in population-size-dependent branching processes”, J. Appl. Probab., 21 (1984), 40–49 | DOI | MR | Zbl

[14] Klebaner F.C., “Geometric growth in near-supercritical population size dependent multitype Galton–Watson processes”, Ann. Probab., 17 (1989), 1466–1477 | DOI | MR | Zbl

[15] Klebaner F.C., “Asymptotic behaviour of Markov population processes with asymptotically linear rate of change”, J. Appl. Probab., 31 (1994), 614–625 | DOI | MR | Zbl

[16] Klebaner F.C., Sagitov S., Vatutin V.A., Haccou P., Jagers P., “Stochasticity in the adaptive dynamics of evolution: the bare bones”, J. Biol. Dyn., 5 (2011), 147–162 | DOI | MR

[17] Méléard S., Roelly-Coppoletta S., “A generalized equation for a continuous measure branching process”, Stochastic partial differential equations and applications II, Lect. Notes Math., 1390, eds. G. Da Prato, L. Tubaro, Springer, Belin, 1989, 171–185 | DOI | MR

[18] Méléard S., Tran V.C., “Slow and fast scales for superprocess limits of age-structured populations”, Stoch. Processes Appl., 122 (2012), 250–276 | DOI | MR | Zbl

[19] Oelschläger K., “Limit theorems for age-structured populations”, Ann. Probab., 18 (1990), 290–318 | DOI | MR | Zbl

[20] Tran V.C., “Large population limit and time behaviour of a stochastic particle model describing an age-structured population”, ESAIM: Probab. Stat., 12 (2008), 345–386 | DOI | MR | Zbl