Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_282_a8, author = {K. Hamza and P. Jagers and F. C. Klebaner}, title = {The age structure of population-dependent general branching processes in environments with a~high carrying capacity}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {98--113}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a8/} }
TY - JOUR AU - K. Hamza AU - P. Jagers AU - F. C. Klebaner TI - The age structure of population-dependent general branching processes in environments with a~high carrying capacity JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 98 EP - 113 VL - 282 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_282_a8/ LA - en ID - TM_2013_282_a8 ER -
%0 Journal Article %A K. Hamza %A P. Jagers %A F. C. Klebaner %T The age structure of population-dependent general branching processes in environments with a~high carrying capacity %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 98-113 %V 282 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_282_a8/ %G en %F TM_2013_282_a8
K. Hamza; P. Jagers; F. C. Klebaner. The age structure of population-dependent general branching processes in environments with a~high carrying capacity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 98-113. http://geodesic.mathdoc.fr/item/TM_2013_282_a8/
[1] Billingsley P., Convergence of probability measures, 2nd ed., J. Wiley Sons, New York, 1999 | MR | Zbl
[2] Champagnat N., Ferrière R., Méléard S., “Individual-based probabilistic models of adaptive evolution and various scaling approximations”, Seminar on stochastic analysis, random fields and applications V, Ascona (Switzerland), 2005, Prog. Probab., 59, Birkhäuser, Basel, 2008, 75–113 | DOI | MR | Zbl
[3] Champagnat N., Ferrière R., Méléard S., “From individual stochastic processes to macroscopic models in adaptive evolution”, Stoch. Models, 24, Suppl. 1 (2008), 2–44 | DOI | MR | Zbl
[4] Champagnat N., Lambert A., “Adaptive dynamics in logistic branching populations”, Stochastic models in biological sciences, Banach Center Publ., 80, Inst. Math., Pol. Acad. Sci., Warsaw, 2008, 235–244 | DOI | MR | Zbl
[5] Etheridge A.M., An introduction to superprocesses, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[6] Haccou P., Jagers P., Vatutin V.A., Branching processes: Variation, growth, and extinction of populations, Cambridge Univ. Press, Cambridge, 2005 | Zbl
[7] Jagers P., Branching processes with biological applications, J. Wiley Sons, London, 1975 | MR | Zbl
[8] Jagers P., Klebaner F., “Random variation and concentration effects in PCR”, J. Theor. Biol., 224 (2003), 299–304 | DOI | MR
[9] Jagers P., Klebaner F.C., “Population-size-dependent and age-dependent branching processes”, Stoch. Processes Appl., 87 (2000), 235–254 | DOI | MR | Zbl
[10] Jagers P., Klebaner F.C., “Population-size-dependent, age-structured branching processes linger around their carrying capacity”, J. Appl. Probab., 48A (2011), 249–260 | DOI | MR | Zbl
[11] Jakubowski A., “On the Skorokhod topology”, Ann. Inst. Henri Poincaré. Probab. Stat., 22 (1986), 263–285 | MR | Zbl
[12] Kaspi H., Ramanan K., “Law of large numbers limits for many-server queues”, Ann. Appl. Probab., 21 (2011), 33–114 | DOI | MR | Zbl
[13] Klebaner F.C., “Geometric rate of growth in population-size-dependent branching processes”, J. Appl. Probab., 21 (1984), 40–49 | DOI | MR | Zbl
[14] Klebaner F.C., “Geometric growth in near-supercritical population size dependent multitype Galton–Watson processes”, Ann. Probab., 17 (1989), 1466–1477 | DOI | MR | Zbl
[15] Klebaner F.C., “Asymptotic behaviour of Markov population processes with asymptotically linear rate of change”, J. Appl. Probab., 31 (1994), 614–625 | DOI | MR | Zbl
[16] Klebaner F.C., Sagitov S., Vatutin V.A., Haccou P., Jagers P., “Stochasticity in the adaptive dynamics of evolution: the bare bones”, J. Biol. Dyn., 5 (2011), 147–162 | DOI | MR
[17] Méléard S., Roelly-Coppoletta S., “A generalized equation for a continuous measure branching process”, Stochastic partial differential equations and applications II, Lect. Notes Math., 1390, eds. G. Da Prato, L. Tubaro, Springer, Belin, 1989, 171–185 | DOI | MR
[18] Méléard S., Tran V.C., “Slow and fast scales for superprocess limits of age-structured populations”, Stoch. Processes Appl., 122 (2012), 250–276 | DOI | MR | Zbl
[19] Oelschläger K., “Limit theorems for age-structured populations”, Ann. Probab., 18 (1990), 290–318 | DOI | MR | Zbl
[20] Tran V.C., “Large population limit and time behaviour of a stochastic particle model describing an age-structured population”, ESAIM: Probab. Stat., 12 (2008), 345–386 | DOI | MR | Zbl