Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 52-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Intermediately subcritical branching processes in random environment are at the borderline between two subcritical regimes and exhibit particularly rich behavior. In this paper, we prove a functional limit theorem for these processes. It is discussed together with two other recently proved limit theorems for the intermediately subcritical case and illustrated by several computer simulations.
@article{TM_2013_282_a4,
     author = {Christian B\"oinghoff and G\"otz Kersting},
     title = {Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--68},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a4/}
}
TY  - JOUR
AU  - Christian Böinghoff
AU  - Götz Kersting
TI  - Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 52
EP  - 68
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a4/
LA  - en
ID  - TM_2013_282_a4
ER  - 
%0 Journal Article
%A Christian Böinghoff
%A Götz Kersting
%T Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 52-68
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a4/
%G en
%F TM_2013_282_a4
Christian Böinghoff; Götz Kersting. Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 52-68. http://geodesic.mathdoc.fr/item/TM_2013_282_a4/

[1] Afanasev V.I., Predelnye teoremy dlya uslovnogo sluchainogo bluzhdaniya i nekotorye primeneniya, Dis. ... kand. fiz.-mat. nauk, MGU, M., 1980

[2] Afanasyev V.I., “Limit theorems for intermediately subcritical and strongly subcritical branching processes in a random environment”, Discrete Math. Appl., 11 (2001), 105–131 | DOI | MR | Zbl

[3] Afanasyev V.I., Böinghoff Ch., Kersting G., Vatutin V.A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25 (2012), 703–732 | DOI | MR | Zbl

[4] Afanasyev V.I., Böinghoff Ch., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat. (to appear) , arXiv: 1108.2127 [math.PR]

[5] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33 (2005), 645–673 | DOI | MR | Zbl

[6] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stoch. Processes Appl., 115 (2005), 1658–1676 | DOI | MR | Zbl

[7] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., 12 (1975), 39–46 | DOI | MR | Zbl

[8] Athreya K.B., Karlin S., “On branching processes with random environments. I: Extinction probabilities”, Ann. Math. Stat., 42 (1971), 1499–1520 | DOI | MR | Zbl

[9] Birkner M., Geiger J., Kersting G., “Branching processes in random environment—A view on critical and subcritical cases”, Interacting stochastic systems, Springer, Berlin, 2005, 269–291 | DOI | MR

[10] Dekking F.M., “On the survival probability of a branching process in a finite state i.i.d. environment”, Stoch. Processes Appl., 27 (1988), 151–157 | DOI | MR

[11] Geiger J., “Elementary new proofs of classical limit theorems for Galton–Watson processes”, J. Appl. Probab., 36 (1999), 301–309 | DOI | MR | Zbl

[12] Geiger J., Kersting G., Vatutin V.A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat., 39 (2003), 593–620 | DOI | MR | Zbl

[13] Guivarc'h Y., Liu Q., “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. r. Acad. sci. Paris. Ser. 1: Math., 332 (2001), 339–344 | DOI | MR | Zbl

[14] Kallenberg O., Foundations of modern probability, 2nd ed., Springer, New York, 2002 | MR | Zbl

[15] Kozlov M.V., “On large deviations of branching processes in a random environment: Geometric distribution of descendants”, Discrete Math. Appl., 16 (2006), 155–174 | DOI | DOI | MR | Zbl

[16] Lyons R., Pemantle R., Peres Y., “Conceptual proofs of $L\log L$ criteria for mean behavior of branching processes”, Ann. Probab., 23 (1995), 1125–1138 | DOI | MR | Zbl

[17] Smith W.L., Wilkinson W.E., “On branching processes in random environments”, Ann. Math. Stat., 40 (1969), 814–827 | DOI | MR | Zbl

[18] Vatutin V.A., “Limit theorem for an intermediate subcritical branching process in a random environment”, Theory Probab. Appl., 48 (2004), 481–492 | DOI | DOI | MR | Zbl