Simulations and a conditional limit theorem for intermediately subcritical branching processes in random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 52-68
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Intermediately subcritical branching processes in random environment are at the borderline between two subcritical regimes and exhibit particularly rich behavior. In this paper, we prove a functional limit theorem for these processes. It is discussed together with two other recently proved limit theorems for the intermediately subcritical case and illustrated by several computer simulations.
@article{TM_2013_282_a4,
     author = {Christian B\"oinghoff and G\"otz Kersting},
     title = {Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--68},
     year = {2013},
     volume = {282},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a4/}
}
TY  - JOUR
AU  - Christian Böinghoff
AU  - Götz Kersting
TI  - Simulations and a conditional limit theorem for intermediately subcritical branching processes in random environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 52
EP  - 68
VL  - 282
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a4/
LA  - en
ID  - TM_2013_282_a4
ER  - 
%0 Journal Article
%A Christian Böinghoff
%A Götz Kersting
%T Simulations and a conditional limit theorem for intermediately subcritical branching processes in random environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 52-68
%V 282
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a4/
%G en
%F TM_2013_282_a4
Christian Böinghoff; Götz Kersting. Simulations and a conditional limit theorem for intermediately subcritical branching processes in random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 52-68. http://geodesic.mathdoc.fr/item/TM_2013_282_a4/

[1] Afanasev V.I., Predelnye teoremy dlya uslovnogo sluchainogo bluzhdaniya i nekotorye primeneniya, Dis. ... kand. fiz.-mat. nauk, MGU, M., 1980

[2] Afanasyev V.I., “Limit theorems for intermediately subcritical and strongly subcritical branching processes in a random environment”, Discrete Math. Appl., 11 (2001), 105–131 | DOI | MR | Zbl

[3] Afanasyev V.I., Böinghoff Ch., Kersting G., Vatutin V.A., “Limit theorems for weakly subcritical branching processes in random environment”, J. Theor. Probab., 25 (2012), 703–732 | DOI | MR | Zbl

[4] Afanasyev V.I., Böinghoff Ch., Kersting G., Vatutin V.A., “Conditional limit theorems for intermediately subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat. (to appear) , arXiv: 1108.2127 [math.PR]

[5] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Ann. Probab., 33 (2005), 645–673 | DOI | MR | Zbl

[6] Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stoch. Processes Appl., 115 (2005), 1658–1676 | DOI | MR | Zbl

[7] Agresti A., “On the extinction times of varying and random environment branching processes”, J. Appl. Probab., 12 (1975), 39–46 | DOI | MR | Zbl

[8] Athreya K.B., Karlin S., “On branching processes with random environments. I: Extinction probabilities”, Ann. Math. Stat., 42 (1971), 1499–1520 | DOI | MR | Zbl

[9] Birkner M., Geiger J., Kersting G., “Branching processes in random environment—A view on critical and subcritical cases”, Interacting stochastic systems, Springer, Berlin, 2005, 269–291 | DOI | MR

[10] Dekking F.M., “On the survival probability of a branching process in a finite state i.i.d. environment”, Stoch. Processes Appl., 27 (1988), 151–157 | DOI | MR

[11] Geiger J., “Elementary new proofs of classical limit theorems for Galton–Watson processes”, J. Appl. Probab., 36 (1999), 301–309 | DOI | MR | Zbl

[12] Geiger J., Kersting G., Vatutin V.A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat., 39 (2003), 593–620 | DOI | MR | Zbl

[13] Guivarc'h Y., Liu Q., “Propriétés asymptotiques des processus de branchement en environnement aléatoire”, C. r. Acad. sci. Paris. Ser. 1: Math., 332 (2001), 339–344 | DOI | MR | Zbl

[14] Kallenberg O., Foundations of modern probability, 2nd ed., Springer, New York, 2002 | MR | Zbl

[15] Kozlov M.V., “On large deviations of branching processes in a random environment: Geometric distribution of descendants”, Discrete Math. Appl., 16 (2006), 155–174 | DOI | DOI | MR | Zbl

[16] Lyons R., Pemantle R., Peres Y., “Conceptual proofs of $L\log L$ criteria for mean behavior of branching processes”, Ann. Probab., 23 (1995), 1125–1138 | DOI | MR | Zbl

[17] Smith W.L., Wilkinson W.E., “On branching processes in random environments”, Ann. Math. Stat., 40 (1969), 814–827 | DOI | MR | Zbl

[18] Vatutin V.A., “Limit theorem for an intermediate subcritical branching process in a random environment”, Theory Probab. Appl., 48 (2004), 481–492 | DOI | DOI | MR | Zbl