Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 52-68
Voir la notice de l'article provenant de la source Math-Net.Ru
Intermediately subcritical branching processes in random environment are at the borderline between two subcritical regimes and exhibit particularly rich behavior. In this paper, we prove a functional limit theorem for these processes. It is discussed together with two other recently proved limit theorems for the intermediately subcritical case and illustrated by several computer simulations.
@article{TM_2013_282_a4,
author = {Christian B\"oinghoff and G\"otz Kersting},
title = {Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {52--68},
publisher = {mathdoc},
volume = {282},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a4/}
}
TY - JOUR AU - Christian Böinghoff AU - Götz Kersting TI - Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 52 EP - 68 VL - 282 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_282_a4/ LA - en ID - TM_2013_282_a4 ER -
%0 Journal Article %A Christian Böinghoff %A Götz Kersting %T Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 52-68 %V 282 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_282_a4/ %G en %F TM_2013_282_a4
Christian Böinghoff; Götz Kersting. Simulations and a~conditional limit theorem for intermediately subcritical branching processes in random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 52-68. http://geodesic.mathdoc.fr/item/TM_2013_282_a4/