Lower large deviations for supercritical branching processes in random environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 22-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Branching processes in random environment $(Z_n\colon n\geq0)$ are the generalization of Galton–Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical regime, the process survives with a positive probability and grows exponentially on the non-extinction event. We focus on rare events when the process takes positive values but lower than expected. More precisely, we are interested in the lower large deviations of $Z$, which means the asymptotic behavior of the probability $\{1\leq Z_n\leq\exp(n\theta)\}$ as $n\to\infty$. We provide an expression for the rate of decrease of this probability under some moment assumptions, which yields the rate function. With this result we generalize the lower large deviation theorem of Bansaye and Berestycki (2009) by considering processes where $\mathbb P(Z_1=0\mid Z_0=1)>0$ and also much weaker moment assumptions.
@article{TM_2013_282_a2,
     author = {Vincent Bansaye and Christian B\"oinghoff},
     title = {Lower large deviations for supercritical branching processes in random environment},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {22--41},
     publisher = {mathdoc},
     volume = {282},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a2/}
}
TY  - JOUR
AU  - Vincent Bansaye
AU  - Christian Böinghoff
TI  - Lower large deviations for supercritical branching processes in random environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 22
EP  - 41
VL  - 282
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_282_a2/
LA  - en
ID  - TM_2013_282_a2
ER  - 
%0 Journal Article
%A Vincent Bansaye
%A Christian Böinghoff
%T Lower large deviations for supercritical branching processes in random environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 22-41
%V 282
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_282_a2/
%G en
%F TM_2013_282_a2
Vincent Bansaye; Christian Böinghoff. Lower large deviations for supercritical branching processes in random environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 22-41. http://geodesic.mathdoc.fr/item/TM_2013_282_a2/

[1] Athreya K.B., “Large deviation rates for branching processes. I: Single type case”, Ann. Appl. Probab., 4 (1994), 779–790 | DOI | MR | Zbl

[2] Athreya K.B., Karlin S., “On branching processes with random environments. I: Extinction probabilities”, Ann. Math. Stat., 42 (1971), 1499–1520 | DOI | MR | Zbl

[3] Athreya K.B., Ney P.E., Branching processes, Dover Publ., Mineola, NY, 2004 | MR | Zbl

[4] Athreya K.B., Vidyashankar A.N., “Large deviation rates for supercritical and critical branching processes”, Classical and modern branching processes, Proc. IMA Workshop, Minneapolis, 1994, Springer, New York, 1997, 1–18 | DOI | MR | Zbl

[5] Bansaye V., “Proliferating parasites in dividing cells: Kimmel's branching model revisited”, Ann. Appl. Probab., 18 (2008), 967–996 | DOI | MR | Zbl

[6] Bansaye V., “Cell contamination and branching processes in a random environment with immigration”, Adv. Appl. Probab., 41 (2009), 1059–1081 | DOI | MR | Zbl

[7] Bansaye V., Berestycki J., “Large deviations for branching processes in random environment”, Markov Processes Relat. Fields, 15 (2009), 493–524 | MR | Zbl

[8] Bansaye V., Böinghoff Ch., “Upper large deviations for branching processes in random environment with heavy tails”, Electron. J. Probab., 16 (2011), 1900–1933 | DOI | MR | Zbl

[9] Bansaye V., Böinghoff Ch., “Small positive values for supercritical branching processes in random environment”, Ann. Inst. Henri Poincaré. Probab. Stat. (to appear) , arXiv: 1112.5257 [math.PR]

[10] Böinghoff Ch., Kersting G., “Upper large deviations of branching processes in a random environment—Offspring distributions with geometrically bounded tails”, Stoch. Processes Appl., 120 (2010), 2064–2077 | DOI | MR | Zbl

[11] Dembo A., Zeitouni O., Large deviations techniques and applications, Jones and Barlett Publ., Boston, MA, 1993 | MR | Zbl

[12] den Hollander F., Large deviations, Amer. Math. Soc., Providence, RI, 2000 | MR

[13] Fleischmann K., Vatutin V.A., “Reduced subcritical Galton–Watson processes in a random environment”, Adv. Appl. Probab., 31 (1999), 88–111 | DOI | MR | Zbl

[14] Fleischmann K., Wachtel V., “Lower deviation probabilities for supercritical Galton–Watson processes”, Ann. Inst. Henri Poincaré. Probab. Stat., 43 (2007), 233–255 | DOI | MR | Zbl

[15] Fleischmann K., Wachtel V., “On the left tail asymptotics for the limit law of supercritical Galton–Watson processes in the Böttcher case”, Ann. Inst. Henri Poincaré. Probab. Stat., 45 (2009), 201–225 | DOI | MR | Zbl

[16] Hambly B., “On the limiting distribution of a supercritical branching process in random environment”, J. Appl. Probab., 29 (1992), 499–518 | DOI | MR | Zbl

[17] Huang C., Liu Q., Convergence in $L^p$ and its exponential rate for a branching process in a random environment, E-print, 2010, arXiv: 1011.0533 [math.PR]

[18] Huang C., Liu Q., “Moments, moderate and large deviations for a branching process in a random environment”, Stoch. Processes Appl., 122 (2012), 522–545 | DOI | MR | Zbl

[19] Kallenberg O., Foundations of modern probability, 2nd ed., Springer, New York, 2002 | MR | Zbl

[20] Kozlov M.V., “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21 (1977), 791–804 | DOI | MR | Zbl

[21] Kozlov M.V., “On large deviations of branching processes in a random environment: Geometric distribution of descendants”, Discrete Math. Appl., 16 (2006), 155–174 | DOI | DOI | MR | Zbl

[22] Kozlov M.V., “On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny”, Theory Probab. Appl., 54 (2010), 424–446 | DOI | DOI | MR | Zbl

[23] Ney P.E., Vidyashankar A.N., “Local limit theory and large deviations for supercritical branching processes”, Ann. Appl. Probab., 14 (2004), 1135–1166 | DOI | MR | Zbl

[24] Rouault A., “Large deviations and branching processes”, Proc. 9th Int. Summer School on Probability Theory and Mathematical Statistics, Sozopol, 1997, Pliska Stud. Math. Bulg., 13, Bulg. Acad. Sci., Inst. Math. Inform., Sofia, 2000, 14–38 | MR | Zbl

[25] Smith W.L., Wilkinson W.E., “On branching processes in random environments”, Ann. Math. Stat., 40 (1969), 814–827 | DOI | MR | Zbl