Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_282_a10, author = {I. N. Kovalenko}, title = {B.\,A.~Sevastyanov's famous theorem}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {132--134}, publisher = {mathdoc}, volume = {282}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2013_282_a10/} }
I. N. Kovalenko. B.\,A.~Sevastyanov's famous theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching processes, random walks, and related problems, Tome 282 (2013), pp. 132-134. http://geodesic.mathdoc.fr/item/TM_2013_282_a10/
[1] Fortet R.M., “Random distributions with an application to telephone engineering”, Proc. 3rd Berkeley Symp. Math. Stat. Probab., V. 2, Univ. California Press, Berkeley, 1956, 81–88 | MR
[2] Khinchin A.Ya., Raboty po matematicheskoi teorii massovogo obsluzhivaniya, ed. B.V. Gnedenko, URSS, M., 2004
[3] Sevastyanov B.A., “Formuly Erlanga v telefonii pri proizvolnom zakone raspredeleniya dlitelnosti razgovora”, Tr. 3-go Vsesoyuz. mat. s'ezda, M., 1956, T. 4, Izd-vo AN SSSR, M., 1959, 58–70
[4] Sevastyanov B.A., “Ergodicheskaya teorema dlya markovskikh protsessov i ee prilozhenie k telefonnym sistemam s otkazami”, Teoriya veroyatn. i ee primen., 2:1 (1957), 106–116 | MR | Zbl
[5] Gnedenko B.V., Kovalenko I.N., Vvedenie v teoriyu massovogo obsluzhivaniya, URSS, M., 2011
[6] König D., Matthes K., Nawrotzki K., Verallgemeinerungen der Erlangschen und Engsetschen Formeln, Akad.-Verlag, Berlin, 1967 | Zbl
[7] Franken P., Kënig D., Arndt U., Shmidt F., Ocheredi i tochechnye protsessy, Nauk. dumka, Kiev, 1984 | Zbl
[8] Kelly F.P., Reversibility and stochastic networks, J. Wiley Sons, Chichester, 1979 | MR
[9] Ivnitskii V.A., Teoriya setei massovogo obsluzhivaniya, Fizmatlit, M., 2004
[10] Kovalenko I.N., Atkinson J.B., Mykhalevych K.V., “Three cases of light-traffic insensitivity of the loss probability in a $GI/G/m/0$ loss system to the shape of the service time distribution”, Queueing Syst., 45:3 (2003), 245–271 | DOI | MR | Zbl