Collision of a~solar wind shock wave with the Earth's bow shock. Wave flow pattern
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 199-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

The wave pattern of the flow developed when a solar wind shock wave propagates along the surface of the Earth's bow shock is studied. The investigation is carried out in the three-dimensional non-plane-polarized formulation within the framework of the ideal magnetohydrodynamic model in which the medium is assumed to be inviscid and non-heat-conducting and to have the infinite conductivity. The global three-dimensional pattern of the interaction which is a function of the latitude and longitude of elements on the surface of the bow shock is constructed as a mosaic of solutions to the problem of breakdown of a discontinuity developed between the states behind the impinging and bow shocks on the moving curve of intersection of their fronts. The investigation is carried out for typical solar wind parameters and interplanetary magnetic field strength in the Earth's orbit and for several Mach numbers of the interplanetary shock wave, which makes it possible to trace the evolution of the flow developed as a function of the intensity of the shock perturbation of the solar wind. The solution obtained is necessary for interpreting measurements carried out by spacecraft located in the neighborhood of the Lagrange point and the Earth's magnetosphere.
@article{TM_2013_281_a15,
     author = {E. A. Pushkar and A. S. Korolev},
     title = {Collision of a~solar wind shock wave with the {Earth's} bow shock. {Wave} flow pattern},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {199--214},
     publisher = {mathdoc},
     volume = {281},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_281_a15/}
}
TY  - JOUR
AU  - E. A. Pushkar
AU  - A. S. Korolev
TI  - Collision of a~solar wind shock wave with the Earth's bow shock. Wave flow pattern
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 199
EP  - 214
VL  - 281
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_281_a15/
LA  - ru
ID  - TM_2013_281_a15
ER  - 
%0 Journal Article
%A E. A. Pushkar
%A A. S. Korolev
%T Collision of a~solar wind shock wave with the Earth's bow shock. Wave flow pattern
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 199-214
%V 281
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_281_a15/
%G ru
%F TM_2013_281_a15
E. A. Pushkar; A. S. Korolev. Collision of a~solar wind shock wave with the Earth's bow shock. Wave flow pattern. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mechanics, Tome 281 (2013), pp. 199-214. http://geodesic.mathdoc.fr/item/TM_2013_281_a15/

[1] Přech L., Němeček Z., Šafránková J., “Response of magnetospheric boundaries to the interplanetary shock: Themis contribution”, Geophys. Res. Lett., 35 (2008), Pap. L17S02 | DOI

[2] Keika K. et al., “Deformation and evolution of solar wind discontinuities through their interactions with the Earth's bow shock”, J. Geophys. Res., 114 (2009), Pap. A00C26 | DOI

[3] Pallocchia G. et al., “Interplanetary shock transmitted into the Earth's magnetosheath: Cluster and Double Star observations”, Ann. Geophys., 28 (2010), 1141–1156 | DOI

[4] Samsonov A.A. et al., “Propagation of a sudden impulse through the magnetosphere initiating magnetospheric Pc5 pulsations”, J. Geophys. Res., 116 (2011), Pap. A10216 | DOI

[5] Samsonov A.A., Němeček Z., Šafránková J., “Numerical MHD modeling of propagation of interplanetary shock through the magnetosheath”, J. Geophys. Res., 111 (2006), Pap. A08210 | DOI

[6] Samsonov A.A., “Propagation of inclined interplanetary shock through the magnetosheath”, J. Atmos. Sol.-Terr. Phys., 73 (2011), 30–39 | DOI

[7] Pushkar E.A., Barmin A.A., Grib S.A., “Issledovanie v MGD-priblizhenii padeniya udarnoi volny solnechnogo vetra na okolozemnuyu golovnuyu udarnuyu volnu”, Geomagnetizm i aeronomiya, 31:3 (1991), 522–525 | MR

[8] Barmin A.A., Pushkar E.A., “Magnitogidrodinamicheskoe opisanie protsessa stolknoveniya udarnogo vozmuscheniya solnechnogo vetra i golovnoi udarnoi volny”, Izv. RAN. Mekhanika zhidkosti i gaza, 1992, no. 4, 140–155

[9] Pushkar E.A., “Trekhmernoe magnitogidrodinamicheskoe opisanie protsessa stolknoveniya udarnoi volny solnechnogo vetra i okolozemnoi golovnoi udarnoi volny”, Izv. RAN. Mekhanika zhidkosti i gaza, 2009, no. 6, 139–156 | Zbl

[10] Pushkar E.A., “Trekhmernoe magnitogidrodinamicheskoe opisanie protsessa padeniya vraschatelnogo razryva solnechnogo vetra na okolozemnuyu golovnuyu udarnuyu volnu”, Izv. RAN. Mekhanika zhidkosti i gaza, 2011, no. 2, 155–176 | Zbl

[11] Pushkar E.A., “Stolknovenie udarnoi volny solnechnogo vetra i okolozemnoi golovnoi udarnoi volny v silnom mezhplanetnom magnitnom pole: trekhmernaya magnitogidrodinamicheskaya model”, Izv. MGIU. Inform. tekhnol. i model., 2008, no. 1, 46–74

[12] Pushkar E.A., “Naklonnye neploskopolyarizovannye MGD udarnye volny i ikh vzaimodeistvie”, Izv. RAN. Mekhanika zhidkosti i gaza., 1999, no. 4, 136–152 | MR | Zbl

[13] Kulikovskii A.G., Lyubimov G.A., Magnitnaya gidrodinamika, 2-e izd., Logos, M., 2005

[14] Pushkar E.A., “Statsionarnye prostye volny v proizvolnom magnitnom pole”: Kulikovskii A.G., Lyubimov G.A., Magnitnaya gidrodinamika, Prilozhenie 4, Logos, M., 2005, 285–290

[15] Barmin A.A., Pushkar E.A., “Neregulyarnoe vzaimodeistvie udarnykh voln v magnitnoi gidrodinamike”, Izv. RAN. Mekhanika zhidkosti i gaza, 1993, no. 4, 184–198 | MR | Zbl

[16] Barmin A.A., Pushkar E.A., “Peresechenie udarnykh voln v magnitnoi gidrodinamike”, Izv. AN SSSR. Mekhanika zhidkosti i gaza, 1991, no. 3, 132–143 | MR | Zbl

[17] Hundhausen A.J., Coronal expansion and solar wind, Springer, New York, 1972

[18] Baranov V.B., Krasnobaev K.V., Gidrodinamicheskaya teoriya kosmicheskoi plazmy, Nauka, M., 1977

[19] Merka J., Szabo A., Slavin J.A., Peredo M., “Three-dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation”, J. Geophys. Res., 110 (2005), Pap. A04202 | DOI

[20] Verigin M.I., “Polozhenie i forma okoloplanetnykh udarnykh voln: gazodinamicheskie i MGD aspekty”, Solnechno-zemnye svyazi i elektromagnitnye predvestniki zemletryasenii, Sb. dokl. III Mezhdunar. konf., s. Paratunka Kamch. obl., 16–21 avg. 2004, T. 2, IKIR DVO RAN, Petropavlovsk-Kamch., 2004, 49–68

[21] Barmin A.A., Pushkar E.A., “Dvumernaya MGD-model vzaimodeistviya silnykh razryvov i ee kosmofizicheskie prilozheniya”, Tr. MIAN, 223 (1998), 87–101 | MR | Zbl