Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_280_a3, author = {J. Bourgain}, title = {On the {Schr\"odinger} maximal function in higher dimension}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {53--66}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a3/} }
J. Bourgain. On the Schr\"odinger maximal function in higher dimension. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 53-66. http://geodesic.mathdoc.fr/item/TM_2013_280_a3/
[1] Bennett J., Carbery T., Tao T., “On the multilinear restriction and Kakeya conjectures”, Acta Math., 196 (2006), 261–302 | DOI | MR | Zbl
[2] Bourgain J., “A remark on Schrödinger operators”, Isr. J. Math., 77 (1992), 1–16 | DOI | MR | Zbl
[3] Bourgain J., “Some new estimates on oscillatory integrals”, Essays on Fourier analysis in honor of Elias M. Stein, Proc. conf. (Princeton, NJ, 1991), Princeton Math. Ser., 42, Princeton Univ. Press, Princeton, NJ, 1995, 83–112 | MR | Zbl
[4] Bourgain J., Guth L., “Bounds on oscillatory integral operators based on multilinear estimates”, Geom. Funct. Anal., 21:6 (2011), 1239–1295 | DOI | MR | Zbl
[5] Carleson L., “Some analytic problems related to statistical mechanics”, Euclidean harmonic analysis, Proc. semin. (Univ. Maryland, 1979), Lect. Notes Math., 779, Springer, Berlin, 1980, 5–45 | DOI | MR
[6] Dahlberg B.E.J., Kenig C.E., “A note on the almost everywhere behavior of solutions to the Schrödinger equation”, Harmonic analysis, Proc. conf. (Minneapolis, 1981), Lect. Notes Math., 908, Springer, Berlin, 1982, 205–209 | DOI | MR
[7] Lee S., “On pointwise convergence of the solutions to Schrödinger equations in $\mathbb R^2$”, Int. Math. Res. Not., 2006 (2006), 32597 | MR | Zbl
[8] Moyua A., Vargas A., Vega L., “Schrödinger maximal function and restriction properties of the Fourier transform”, Int. Math. Res. Not., 1996:16 (1996), 793–815 | DOI | MR | Zbl
[9] Sjölin P., “Regularity of solutions to the Schrödinger equation”, Duke Math. J., 55:3 (1987), 699–715 | DOI | MR | Zbl
[10] Tao T., “A sharp bilinear restriction estimate for paraboloids”, Geom. Funct. Anal., 13:6 (2003), 1359–1384 | DOI | MR | Zbl
[11] Tao T., Vargas A., “A bilinear approach to cone multipliers. I: Restriction estimates”, Geom. Funct. Anal., 10:1 (2000), 185–215 | DOI | MR | Zbl
[12] Tao T., Vargas A., “A bilinear approach to cone multipliers. II: Applications”, Geom. Funct. Anal., 10:1 (2000), 216–258 | DOI | MR | Zbl
[13] Vega L., “Schrödinger equations: Pointwise convergence to the initial data”, Proc. Amer. Math. Soc., 102:4 (1988), 874–878 | MR | Zbl