On the Schr\"odinger maximal function in higher dimension
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 53-66

Voir la notice de l'article provenant de la source Math-Net.Ru

New estimates on the maximal function associated to the linear Schrödinger equation are established. It is shown that the almost everywhere convergence property of $e^{it\Delta}f$ for $t\to0$ holds for $f\in H^s(\mathbb R^n)$, $s>\frac12-\frac1{4n}$, which is a new result for $n\geq3$. We also construct examples showing that $s\geq\frac12-\frac1n$ is certainly necessary when $n\geq4$. This is a further contribution to our understanding of how L. Carleson's result for $n=1$ generalizes in higher dimension. From the methodological point of view, crucial use is made of J. Bourgain and L. Guth's results and techniques that are based on the multi-linear oscillatory integral theory developed by J. Bennett, T. Carbery and T. Tao.
@article{TM_2013_280_a3,
     author = {J. Bourgain},
     title = {On the {Schr\"odinger} maximal function in higher dimension},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a3/}
}
TY  - JOUR
AU  - J. Bourgain
TI  - On the Schr\"odinger maximal function in higher dimension
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 53
EP  - 66
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a3/
LA  - en
ID  - TM_2013_280_a3
ER  - 
%0 Journal Article
%A J. Bourgain
%T On the Schr\"odinger maximal function in higher dimension
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 53-66
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a3/
%G en
%F TM_2013_280_a3
J. Bourgain. On the Schr\"odinger maximal function in higher dimension. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 53-66. http://geodesic.mathdoc.fr/item/TM_2013_280_a3/