Lipschitz stability of operators in Banach spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 275-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_2013_280_a19,
     author = {V. Yu. Protasov},
     title = {Lipschitz stability of operators in {Banach} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {275--287},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a19/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Lipschitz stability of operators in Banach spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 275
EP  - 287
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a19/
LA  - ru
ID  - TM_2013_280_a19
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Lipschitz stability of operators in Banach spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 275-287
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a19/
%G ru
%F TM_2013_280_a19
V. Yu. Protasov. Lipschitz stability of operators in Banach spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 275-287. http://geodesic.mathdoc.fr/item/TM_2013_280_a19/

[1] 12th International Conference on Functional Equations and Inequalities, Bȩdlewo, September 7–14, 2008, Ann. Acad. paedagog. Cracov, 63, Stud. math., V. 7, 2008, 125–159 | Zbl

[2] Aronszajn N., “Differentiability of Lipschitzian mappings between Banach spaces”, Stud. math., 57:2 (1976), 147–190 | MR | Zbl

[3] Badora R., Ger R., Páles Zs., “Additive selections and the stability of the Cauchy functional equation”, ANZIAM J., 44 (2003), 323–337 | DOI | MR | Zbl

[4] Borwein J.M., Lewis A.S., Convex analysis and nonlinear optimizaton: Theory and examples, CMS Books Math., 3, Springer, New York, 2000 | MR

[5] Czerwik St., “On the stability of the quadratic mapping in normed spaces”, Abh. Math. Semin. Univ. Hamb., 62 (1992), 59–64 | DOI | MR | Zbl

[6] Diestel J., Uhl J.J., Jr., Vector measures, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl

[7] Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional analysis and infinite-dimensional geometry, CMS Books Math., 8, Springer, New York, 2001 | MR | Zbl

[8] Forti G.L., “The stability of homeomorphisms and amenability, with applications to functional equations”, Abh. Math. Semin. Univ. Hamb., 57 (1987), 215–226 | DOI | MR | Zbl

[9] Gajda Z., “On stability of additive mappings”, Int. J. Math. Math. Sci., 14 (1991), 431–434 | DOI | MR | Zbl

[10] Gǎvruţa P., “A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings”, J. Math. Anal. Appl., 184:3 (1994), 431–436 | DOI | MR

[11] Gǎvruta P., “On the stability of some functional equations”, Stability of mappings of Hyers–Ulam type, eds. Th.M. Rassias, J. Tabor, Hadronic Press, Palm Harbor, FL, 1994, 93–98 | MR

[12] Ger R., Šemrl P., “The stability of the exponential equation”, Proc. Amer. Math. Soc., 124 (1996), 779–787 | DOI | MR | Zbl

[13] Hyers D.H., “On the stablity of the linear functional equation”, Proc. Natl. Acd. Sci. USA, 27 (1941), 222–224 | DOI | MR

[14] Hyers D.H., Isac G., Rassias Th.M., Stability of functinal equations in several vaiables, Birkhäuser, Boston, 1998 | MR | Zbl

[15] Ioffe A.D., “Nonsmooth analysis: differential calculus of nondifferentiable mappings”, Trans. Amer. Math. Soc., 266 (1981), 1–56 | DOI | MR | Zbl

[16] Johnson B.E., “Approximately multiplicative maps between Banach algebras”, J. London Math. Soc. Ser. 2, 37:2 (1988), 294–316 | DOI | MR | Zbl

[17] Jung S.-M., “On the Hyers–Ulam–Rassias stability of approximately additive mappings”, J. Math. Anal. Appl., 204:1 (1996), 221–226 | DOI | MR | Zbl

[18] Lindenstrauss J., Preiss D., Tišer J., “Fréchet differentiability of Lipschitz maps and porous sets in Banach spaces”, Banach spaces and their applications in analysis, W. de Gruyter, Berlin, 2007, 111–123 | MR | Zbl

[19] Makó Z., Páles Zs., “On the Lipschitz perturbation of monotonic functions”, Acta math. Hung., 113:1–2 (2006), 1–18 | DOI | MR | Zbl

[20] Preiss D., Zajíček L., “Directional derivatives of Lipschitz functions”, Isr. J. Math., 125 (2001), 1–27 | DOI | MR | Zbl

[21] Protasov V.Yu., “O lineinykh selektorakh vypuklykh mnogoznachnykh otobrazhenii”, Funkts. analiz i ego pril., 45:1 (2011), 56–68 | DOI | MR | Zbl

[22] Rassias Th.M., “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc., 72 (1978), 297–300 | DOI | MR | Zbl

[23] Rassias Th.M., “On the stability of functional equations and a problem of Ulam”, Acta appl. math., 62 (2000), 23–130 | DOI | MR | Zbl

[24] Rubinov A.M., “Sublineinye operatory i ikh prilozheniya”, UMN, 32:4 (1997), 113–174 | MR | Zbl

[25] Šemrl P., “The stability of approximately additive functions”, Stability of mappings of Hyers–Ulam type, eds. Th.M. Rassias, J. Tabor, Hadronic Press, Palm Harbor, FL, 1994, 135–140 | MR | Zbl

[26] Tabor Jac., Tabor Józ., “Local stability of the Cauchy and Jensen equations in function spaces”, Aequationes math., 58:3 (1999), 296–310 | DOI | MR | Zbl

[27] Tabor J., Yost D., “Applications of inverse limits to extensions of operators and approximation of Lipschitz functions”, J. Approx. Theory, 116 (2002), 257–267 | DOI | MR | Zbl

[28] Ulam S.M., A collection of mathematical problems, Interscience, New York, 1960 | MR | Zbl

[29] Zaslavskii A.Ya., “O suschestvovanii lineinogo selektora superlineinogo mnogoznachnogo otobrazheniya”, Mat. zametki, 29:4 (1981), 557–566 | MR