Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_280_a16, author = {Shahaf Nitzan and Alexander Olevskii and Alexander Ulanovskii}, title = {A few remarks on sampling of signals with small spectrum}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {247--254}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a16/} }
TY - JOUR AU - Shahaf Nitzan AU - Alexander Olevskii AU - Alexander Ulanovskii TI - A few remarks on sampling of signals with small spectrum JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 247 EP - 254 VL - 280 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_280_a16/ LA - en ID - TM_2013_280_a16 ER -
%0 Journal Article %A Shahaf Nitzan %A Alexander Olevskii %A Alexander Ulanovskii %T A few remarks on sampling of signals with small spectrum %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2013 %P 247-254 %V 280 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2013_280_a16/ %G en %F TM_2013_280_a16
Shahaf Nitzan; Alexander Olevskii; Alexander Ulanovskii. A few remarks on sampling of signals with small spectrum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 247-254. http://geodesic.mathdoc.fr/item/TM_2013_280_a16/
[1] Batson J.D., Spielman D.A., Srivastava N., “Twice-Ramanujan sparsifiers”, Proc. 41st annual ACM symposium on theory of computing (STOC 2009), ACM, New York, 2009, 255–262, arXiv: 0808.0163 [cs.DS] | DOI | MR
[2] Bourgain J., Tzafriri L., “Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis”, Isr. J. Math., 57:2 (1987), 137–224 | DOI | MR | Zbl
[3] Bourgain J., Tzafriri L., “On a problem of Kadison and Singer”, J. reine angew. Math., 420 (1991), 1–43 | MR | Zbl
[4] Casazza P.G., Tremain J.C., “The Kadison–Singer problem in mathematics and engineering”, Proc. Natl. Acad. Sci. USA, 103:7 (2006), 2032–2039 | DOI | MR | Zbl
[5] Kashin B.S., “Ob odnom svoistve bilineinykh form”, Soobsch. AN GruzSSR, 97:1 (1980), 29–32 | MR | Zbl
[6] Kashin B.S., “Some properties of matrices of bounded operators from space $l^n_2$ to $l^m_2$”, Sov. J. Contemp. Math. Anal., Arm. Acad. Sci., 15:5 (1980), 44–57 | MR | Zbl | Zbl
[7] Kashin B.S., Tzafriri L., Some remarks on the restriction of operators to coordinate subspaces, Preprint, Hebrew Univ. Jerusalem, 1994 | MR | Zbl
[8] Landau H.J., “Necessary density conditions for sampling and interpolation of certain entire functions”, Acta math., 117 (1967), 37–52 | DOI | MR | Zbl
[9] Lawton W., “Minimal sequences and the Kadison–Singer problem”, Bull. Malays. Math. Sci. Soc. Ser. 2, 33:2 (2010), 169–176 | MR | Zbl
[10] Lunin A.A., “Operator norms of submatrices”, Math. Notes, 45 (1989), 248–252 | DOI | MR | Zbl
[11] Matei B., Meyer Y., “A variant of compressed sensing”, Rev. mat. Iberoamer., 25:2 (2009), 669–692 | DOI | MR | Zbl
[12] OlevskiĭA., Ulanovskii A., “Universal sampling and interpolation of band-limited signals”, Geom. Funct. Anal., 18:3 (2008), 1029–1052 | DOI | MR | Zbl
[13] Ruzsa I.Z., “On difference sets”, Stud. sci. math. Hung., 13 (1978), 319–326 | MR | Zbl
[14] Spielman D.A., Srivastava N., An elementary proof of the restricted invertibility theorem, E-print, 2009, arXiv: 0911.1114 [math.FA] | MR | Zbl
[15] Vershynin R., Coordinate restrictions of linear operators in $l_2^n$, E-print, 2000, arXiv: math/0011232 [math.FA]