Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2013_280_a15, author = {J. L. Nelson and V. N. Temlyakov}, title = {Greedy expansions in {Hilbert} spaces}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {234--246}, publisher = {mathdoc}, volume = {280}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a15/} }
J. L. Nelson; V. N. Temlyakov. Greedy expansions in Hilbert spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 234-246. http://geodesic.mathdoc.fr/item/TM_2013_280_a15/
[1] DeVore R.A., Temlyakov V.N. Some remarks on greedy algorithms // Adv. Comput. Math. 1996. V. 5, N 2–3. P. 173–187. | MR
[2] Konyagin S.V., Temlyakov V.N., “Rate of convergence of pure greedy algorithm”, East J. Approx., 5:4 (1999), 493–499 | MR | Zbl
[3] Livshitz E.D., “Lower bounds for the rate of convergence of greedy algorithms”, Izv. Math., 73 (2009), 1197–1215 | DOI | DOI | MR | Zbl
[4] Livshitz E.D., Temlyakov V.N., “Two lower estimates in greedy approximation”, Constr. Approx., 19:4 (2003), 509–523 | DOI | MR | Zbl
[5] Sil'nichenko A.V., “Rate of convergence of greedy algorithms”, Math. Notes, 76 (2004), 582–586 | DOI | DOI | MR | Zbl
[6] Temlyakov V.N., “Weak greedy algorithms”, Adv. Comput. Math., 12:2–3 (2000), 213–227 | DOI | MR | Zbl
[7] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl
[8] Temlyakov V.N., “Greedy expansions in Banach spaces”, Adv. Comput. Math., 26:4 (2007), 431–449 | DOI | MR | Zbl
[9] Temlyakov V., “Greedy algorithms with prescribed coefficients”, J. Fourier Anal. Appl., 13:1 (2007), 71–86 | DOI | MR | Zbl
[10] Temlyakov V., Greedy approximation, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl
[11] Tropp J.A., “Greed is good: algorithmic results for sparse approximation”, IEEE Trans. Inf. Theory., 50:10 (2004), 2231–2242 | DOI | MR | Zbl