Greedy expansions in Hilbert spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 234-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the rate of convergence of expansions of elements in a Hilbert space $H$ into series with regard to a given dictionary $\mathcal D$. The primary goal of this paper is to study representations of an element $f\in H$ by a series $f\sim\sum_{j=1}^\infty c_j(f)g_j(f)$, $g_j(f)\in\mathcal D$. Such a representation involves two sequences: $\{g_j(f)\}_{j=1}^\infty$ and $\{c_j(f)\}_{j=1}^\infty$. In this paper the construction of $\{g_j(f)\}_{j=1}^\infty$ is based on ideas used in greedy-type nonlinear approximation, hence the use of the term greedy expansion. An interesting open problem questions, "What is the best possible rate of convergence of greedy expansions for $f\in A_1(\mathcal D)$?" Previously it was believed that the rate of convergence was slower than $m^{-\frac14}$. The qualitative result of this paper is that the best possible rate of convergence of greedy expansions for $f\in A_1(\mathcal D)$ is faster than $m^{-\frac14}$. In fact, we prove it is faster than $m^{-\frac27}$.
@article{TM_2013_280_a15,
     author = {J. L. Nelson and V. N. Temlyakov},
     title = {Greedy expansions in {Hilbert} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {234--246},
     publisher = {mathdoc},
     volume = {280},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a15/}
}
TY  - JOUR
AU  - J. L. Nelson
AU  - V. N. Temlyakov
TI  - Greedy expansions in Hilbert spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2013
SP  - 234
EP  - 246
VL  - 280
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2013_280_a15/
LA  - en
ID  - TM_2013_280_a15
ER  - 
%0 Journal Article
%A J. L. Nelson
%A V. N. Temlyakov
%T Greedy expansions in Hilbert spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2013
%P 234-246
%V 280
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2013_280_a15/
%G en
%F TM_2013_280_a15
J. L. Nelson; V. N. Temlyakov. Greedy expansions in Hilbert spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 234-246. http://geodesic.mathdoc.fr/item/TM_2013_280_a15/

[1] DeVore R.A., Temlyakov V.N. Some remarks on greedy algorithms // Adv. Comput. Math. 1996. V. 5, N 2–3. P. 173–187. | MR

[2] Konyagin S.V., Temlyakov V.N., “Rate of convergence of pure greedy algorithm”, East J. Approx., 5:4 (1999), 493–499 | MR | Zbl

[3] Livshitz E.D., “Lower bounds for the rate of convergence of greedy algorithms”, Izv. Math., 73 (2009), 1197–1215 | DOI | DOI | MR | Zbl

[4] Livshitz E.D., Temlyakov V.N., “Two lower estimates in greedy approximation”, Constr. Approx., 19:4 (2003), 509–523 | DOI | MR | Zbl

[5] Sil'nichenko A.V., “Rate of convergence of greedy algorithms”, Math. Notes, 76 (2004), 582–586 | DOI | DOI | MR | Zbl

[6] Temlyakov V.N., “Weak greedy algorithms”, Adv. Comput. Math., 12:2–3 (2000), 213–227 | DOI | MR | Zbl

[7] Temlyakov V.N., “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107 | DOI | MR | Zbl

[8] Temlyakov V.N., “Greedy expansions in Banach spaces”, Adv. Comput. Math., 26:4 (2007), 431–449 | DOI | MR | Zbl

[9] Temlyakov V., “Greedy algorithms with prescribed coefficients”, J. Fourier Anal. Appl., 13:1 (2007), 71–86 | DOI | MR | Zbl

[10] Temlyakov V., Greedy approximation, Cambridge Univ. Press, Cambridge, 2011 | MR | Zbl

[11] Tropp J.A., “Greed is good: algorithmic results for sparse approximation”, IEEE Trans. Inf. Theory., 50:10 (2004), 2231–2242 | DOI | MR | Zbl