Rigidity and stability of the Leibniz and the chain rule
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 198-214
Voir la notice de l'article provenant de la source Math-Net.Ru
We study rigidity and stability properties of the Leibniz and chain rule operator equations. We describe which non-degenerate operators $V,T_1,T_2,A\colon C^k(\mathbb R)\to C(\mathbb R)$ satisfy equations of the generalized Leibniz and chain rule type for $f,g\in C^k(\mathbb R)$, namely, $V(f\cdot g)=(T_1f)\cdot g+f\cdot(T_2g)$ for $k=1$, $V(f\cdot g)=(T_1f)\cdot g+f\cdot(T_2g)+(Af)\cdot(Ag)$ for $k=2$, and $V(f\circ g)=(T_1f)\circ g\cdot(T_2g)$ for $k=1$. Moreover, for multiplicative maps $A$, we consider a more general version of the first equation, $V(f\cdot g)=(T_1f)\cdot(Ag)+(Af)\cdot(T_2g)$ for $k=1$. In all these cases, we completely determine all solutions. It turns out that, in any of the equations, the operators $V$, $T_1$ and $T_2$ must be essentially equal. We also consider perturbations of the chain and the Leibniz rule, $T(f\circ g)=Tf\circ g\cdot Tg+B(f\circ g,g)$ and $T(f\cdot g)=Tf\cdot g+f\cdot Tg+B(f,g)$, and show under suitable conditions on $B$ in the first case that $B=0$ and in the second case that the solution is a perturbation of the solution of the standard Leibniz rule equation.
@article{TM_2013_280_a12,
author = {Hermann K\"onig and Vitali Milman},
title = {Rigidity and stability of the {Leibniz} and the chain rule},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {198--214},
publisher = {mathdoc},
volume = {280},
year = {2013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2013_280_a12/}
}
TY - JOUR AU - Hermann König AU - Vitali Milman TI - Rigidity and stability of the Leibniz and the chain rule JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2013 SP - 198 EP - 214 VL - 280 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2013_280_a12/ LA - en ID - TM_2013_280_a12 ER -
Hermann König; Vitali Milman. Rigidity and stability of the Leibniz and the chain rule. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Orthogonal series, approximation theory, and related problems, Tome 280 (2013), pp. 198-214. http://geodesic.mathdoc.fr/item/TM_2013_280_a12/