Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 120-165

Voir la notice de l'article provenant de la source Math-Net.Ru

For a function continuous on a compact set $X\subset\mathbb R^3$ and harmonic inside $X$, we obtain a criterion of uniform approximability by functions harmonic in a neighborhood of $X$ in terms of the classical harmonic capacity. The proof is based on an improved localization scheme of A. G. Vitushkin, on a special geometric construction, and on the methods of the theory of singular integrals.
@article{TM_2012_279_a9,
     author = {M. Ya. Mazalov},
     title = {Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {120--165},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a9/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 120
EP  - 165
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a9/
LA  - ru
ID  - TM_2012_279_a9
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 120-165
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a9/
%G ru
%F TM_2012_279_a9
M. Ya. Mazalov. Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 120-165. http://geodesic.mathdoc.fr/item/TM_2012_279_a9/