Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 120-165
Voir la notice de l'article provenant de la source Math-Net.Ru
For a function continuous on a compact set $X\subset\mathbb R^3$ and harmonic inside $X$, we obtain a criterion of uniform approximability by functions harmonic in a neighborhood of $X$ in terms of the classical harmonic capacity. The proof is based on an improved localization scheme of A. G. Vitushkin, on a special geometric construction, and on the methods of the theory of singular integrals.
@article{TM_2012_279_a9,
author = {M. Ya. Mazalov},
title = {Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {120--165},
publisher = {mathdoc},
volume = {279},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a9/}
}
TY - JOUR AU - M. Ya. Mazalov TI - Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 120 EP - 165 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_279_a9/ LA - ru ID - TM_2012_279_a9 ER -
M. Ya. Mazalov. Criterion of uniform approximability by harmonic functions on compact sets in $\mathbb R^3$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 120-165. http://geodesic.mathdoc.fr/item/TM_2012_279_a9/