Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_279_a8, author = {A. V. Loboda and T. T. D. Nguyẽn}, title = {On the affine homogeneity of tubular type surfaces in $\mathbb C^3$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {102--119}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a8/} }
TY - JOUR AU - A. V. Loboda AU - T. T. D. Nguyẽn TI - On the affine homogeneity of tubular type surfaces in $\mathbb C^3$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 102 EP - 119 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_279_a8/ LA - ru ID - TM_2012_279_a8 ER -
A. V. Loboda; T. T. D. Nguyẽn. On the affine homogeneity of tubular type surfaces in $\mathbb C^3$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 102-119. http://geodesic.mathdoc.fr/item/TM_2012_279_a8/
[1] Cartan É., “Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes”, Ann. Mat. Pura ed Appl. Ser. 4, 11 (1932), 17–90 ; ØE uvres complètes, Part 2, v. 2, Gauthier-Villars, Paris, 1953, 1231–1304 | DOI | MR | Zbl
[2] Loboda A. V., Khodarev A. S., “Ob odnom semeistve affinno odnorodnykh veschestvennykh giperpoverkhnostei 3-mernogo kompleksnogo prostranstva”, Izv. vuzov. Matematika, 2003, no. 10, 38–50 | MR | Zbl
[3] Loboda A. V., “Odnorodnye strogo psevdovypuklye giperpoverkhnosti v $\mathbb C^3$ s dvumernymi gruppami izotropii”, Mat. sb., 192:12 (2001), 3–24 | DOI | MR | Zbl
[4] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta math., 201 (2008), 1–82 | DOI | MR | Zbl
[5] Demin A. M., Loboda A. V., “Primer 2-parametricheskogo semeistva affinno odnorodnykh veschestvennykh giperpoverkhnostei v $\mathbb C^3$”, Mat. zametki, 84:5 (2008), 791–794 | DOI | MR | Zbl
[6] Danilov M. S., Loboda A. V., “Ob affinnoi odnorodnosti indefinitnykh veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^3$”, Mat. zametki, 88:6 (2010), 867–884 | DOI | MR | Zbl
[7] Beloshapka V. K., Kossovskiy I. G., “Homogeneous hypersurfaces in $\mathbb C^3$, associated with a model CR-cubic”, J. Geom. Anal., 20:3 (2010), 538–564 | DOI | MR | Zbl
[8] Loboda A. V., “Affinno odnorodnye veschestvennye giperpoverkhnosti 3-mernogo kompleksnogo prostranstva”, Vestn. Voronezh. gos. un-ta. Fizika. Matematika, 2009, no. 2, 71–91
[9] Loboda A. V., “Klassifikatsiya affinno odnorodnykh nevyrozhdennykh po Levi veschestvennykh giperpoverkhnostei prostranstva $\mathbb C^2$”, Sovremennye problemy matematiki i mekhaniki, Vyp. 3: K 100-letiyu so dnya rozhdeniya N. V. Efimova, v. 6, Matematika, Izd-vo MGU, M., 2011, 56–68
[10] Shabat B. V., Vvedenie v kompleksnyi analiz. Ch. 2: Funktsii neskolkikh peremennykh, Nauka, M., 1976 | MR
[11] Nguen T. T. Z., “Affinno odnorodnye poverkhnosti trubchatogo tipa v $\mathbb C^3$”, Sovremennye metody teorii funktsii i smezhnye problemy, Tez. dokl. Voronezh. zimn. mat. shk., Voronezh, 2011, 236–237
[12] Eastwood M., Ezhov V., “On affine normal forms and a classification of homogeneous surfaces in affine three-space”, Geom. dedicata, 77 (1999), 11–69 | DOI | MR | Zbl
[13] Loboda A. V., “Ob odnom semeistve algebr Li, svyazannykh s odnorodnymi poverkhnostyami”, Tr. MIAN, 253, 2006, 111–126 | MR
[14] Fels G., Kaup W., Nilpotent algebras and affinely homogeneous surfaces, E-print, 2011, arXiv: 1101.3088v2[math.AC] | MR
[15] Dadok J., Yang P., “Automorphisms of tube domains and spherical hypersurfaces”, Amer. J. Math., 107:4 (1985), 999–1013 | DOI | MR | Zbl
[16] Chern S. S., Moser J. K., “Real hypersurfaces in complex manifolds”, Acta math., 133 (1974), 219–271 | DOI | MR