Extended solutions in a~noncommutative sigma model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 72-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an extended solution plays a key role in Uhlenbeck's approach to the description of harmonic maps to the unitary group. In the present paper, we extend this notion to the case of a noncommutative sigma model (a quantum analog of harmonic spheres in the unitary group) and use it to establish that the minimum uniton number of any diagonal solution is equal to the canonical rank of this solution.
@article{TM_2012_279_a5,
     author = {A. V. Domrina},
     title = {Extended solutions in a~noncommutative sigma model},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {72--80},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a5/}
}
TY  - JOUR
AU  - A. V. Domrina
TI  - Extended solutions in a~noncommutative sigma model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 72
EP  - 80
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a5/
LA  - ru
ID  - TM_2012_279_a5
ER  - 
%0 Journal Article
%A A. V. Domrina
%T Extended solutions in a~noncommutative sigma model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 72-80
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a5/
%G ru
%F TM_2012_279_a5
A. V. Domrina. Extended solutions in a~noncommutative sigma model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 72-80. http://geodesic.mathdoc.fr/item/TM_2012_279_a5/

[1] Lechtenfeld O., Popov A. D., “Noncommutative multi-solitons in $2+1$ dimensions”, J. High Energy Phys., 2001:11 (2001), 040 | DOI | MR

[2] Domrin A. V., Lechtenfeld O., Petersen S., “Sigma-model solitons in the noncommutative plane: construction and stability analysis”, J. High Energy Phys., 2005:3 (2005), 045 | DOI | MR

[3] Domrin A. V., “Nekommutativnye unitony”, TMF, 154:2 (2008), 220–239 | DOI | MR | Zbl

[4] Domrin A. V., “Prostranstva modulei reshenii nekommutativnoi sigma-modeli”, TMF, 156:3 (2008), 307–327 | DOI | MR | Zbl

[5] Ferreira M. J., Simões B. A., Wood J. C., “All harmonic 2-spheres in the unitary group, completely explicitly”, Math. Z., 266 (2010), 953–978 | DOI | MR | Zbl

[6] Uhlenbeck K., “Harmonic maps into Lie groups (classical solutions of the chiral model)”, J. Diff. Geom., 30 (1989), 1–50 | MR | Zbl