Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_279_a4, author = {N. A. Bushueva and A. K. Tsikh}, title = {On amoebas of algebraic sets of higher codimension}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {59--71}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a4/} }
N. A. Bushueva; A. K. Tsikh. On amoebas of algebraic sets of higher codimension. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 59-71. http://geodesic.mathdoc.fr/item/TM_2012_279_a4/
[1] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl
[2] Forsberg M., Passare M., Tsikh A., “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151 (2000), 45–70 | DOI | MR | Zbl
[3] Mikhalkin G., “Real algebraic curves, the moment map and amoebas”, Ann. Math. Ser. 2, 151 (2000), 309–326 | DOI | MR | Zbl
[4] Mikhalkin G., Rullgård H., “Amoebas of maximal area”, Int. Math. Res. Not., 2001:9 (2001), 441–451 | DOI | MR | Zbl
[5] Henriques A., “An analogue of convexity for complements of amoebas of varieties of higher codimension, an answer to a question asked by B. Sturmfels”, Adv. Geom., 4:1 (2004), 61–73 | DOI | MR | Zbl
[6] Theobald T., “Computing amoebas”, Exp. Math., 11 (2002), 513–526 | DOI | MR | Zbl
[7] Kenyon R., Okounkov A., Sheffield S., “Dimers and amoebae”, Ann. Math. Ser. 2, 163 (2006), 1019–1056 | DOI | MR | Zbl
[8] Einsiedler M., Kapranov M., Lind D., “Non-archimedean amoebas and tropical varieties”, J. reine angew. Math., 601 (2006), 139–157 | MR | Zbl
[9] Sturmfels B., Solving systems of polynomial equations, CBMS Reg. Conf. Ser. Math., 97, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[10] Leinartas E. K., Passare M., Tsikh A. K., “Mnogomernye versii teoremy Puankare dlya raznostnykh uravnenii”, Mat. sb., 199:10 (2008), 87–104 | DOI | MR | Zbl
[11] Pochekutov D. Yu., Tsikh A. K., “Ob asimptotike koeffitsientov Lorana i ee primenenii v statisticheskoi mekhanike”, Zhurn. Sib. feder. un-ta. Matematika i fizika, 2:4 (2009), 483–493
[12] Passare M., Tsikh A., “Amoebas: their spines and their contours”, Idempotent mathematics and mathematical physics, Proc. Int. Workshop (Vienna, 2003), Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 275–288 | DOI | MR | Zbl
[13] Kapranov M. M., “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290 (1991), 277–285 | DOI | MR | Zbl
[14] Curtis C. W., Reiner I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962 ; Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR | Zbl | MR
[15] Aizenberg L. A., Yuzhakov A. P., Integral representations and residues in multidimensional complex analysis, Transl. Math. Monogr., 58, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl
[16] Andreotti A., Frankel T., “The Lefschetz theorem on hyperplane sections”, Ann. Math. Ser. 2, 69 (1959), 713–717 | DOI | MR | Zbl
[17] Bott R., Tu L. W., Differential forms in algebraic topology, Grad. Texts Math., 82, Springer, New York, 1982 ; Bott R., Tu L. V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | DOI | MR | Zbl | MR | Zbl
[18] Leray J., “Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy. III)”, Bull. Soc. math. France, 87 (1959), 81–180 ; Lere Zh., Differentsialnoe i integralnoe ischisleniya na kompleksnom analiticheskom mnogoobrazii, Izd-vo inostr. lit., M., 1961 | MR | Zbl | MR
[19] Fotiadi D., Froissart M., Lascoux J., Pham F., “Applications of an isotopy theorem”, Topology, 4 (1965), 159–191 ; Fotiadi D., Fruassar M., Lasku Zh., Fam F., “Prilozhenie izotopicheskoi teoremy”, Dopolnenie 1 v knige: Khua R., Teplits V., Gomologiya i feinmanovskie integraly, Mir, M., 1969, 142–182 | DOI | MR | Zbl | MR