On amoebas of algebraic sets of higher codimension
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 59-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The amoeba of a complex algebraic set is its image under the projection onto the real subspace in the logarithmic scale. We study the homological properties of the complements of amoebas for sets of codimension higher than 1. In particular, we refine A. Henriques' result saying that the complement of the amoeba of a codimension $k$ set is $(k-1)$-convex. We also describe the relationship between the critical points of the logarithmic projection and the logarithmic Gauss map of algebraic sets.
@article{TM_2012_279_a4,
     author = {N. A. Bushueva and A. K. Tsikh},
     title = {On amoebas of algebraic sets of higher codimension},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {59--71},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a4/}
}
TY  - JOUR
AU  - N. A. Bushueva
AU  - A. K. Tsikh
TI  - On amoebas of algebraic sets of higher codimension
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 59
EP  - 71
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a4/
LA  - ru
ID  - TM_2012_279_a4
ER  - 
%0 Journal Article
%A N. A. Bushueva
%A A. K. Tsikh
%T On amoebas of algebraic sets of higher codimension
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 59-71
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a4/
%G ru
%F TM_2012_279_a4
N. A. Bushueva; A. K. Tsikh. On amoebas of algebraic sets of higher codimension. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 59-71. http://geodesic.mathdoc.fr/item/TM_2012_279_a4/

[1] Gelfand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[2] Forsberg M., Passare M., Tsikh A., “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151 (2000), 45–70 | DOI | MR | Zbl

[3] Mikhalkin G., “Real algebraic curves, the moment map and amoebas”, Ann. Math. Ser. 2, 151 (2000), 309–326 | DOI | MR | Zbl

[4] Mikhalkin G., Rullgård H., “Amoebas of maximal area”, Int. Math. Res. Not., 2001:9 (2001), 441–451 | DOI | MR | Zbl

[5] Henriques A., “An analogue of convexity for complements of amoebas of varieties of higher codimension, an answer to a question asked by B. Sturmfels”, Adv. Geom., 4:1 (2004), 61–73 | DOI | MR | Zbl

[6] Theobald T., “Computing amoebas”, Exp. Math., 11 (2002), 513–526 | DOI | MR | Zbl

[7] Kenyon R., Okounkov A., Sheffield S., “Dimers and amoebae”, Ann. Math. Ser. 2, 163 (2006), 1019–1056 | DOI | MR | Zbl

[8] Einsiedler M., Kapranov M., Lind D., “Non-archimedean amoebas and tropical varieties”, J. reine angew. Math., 601 (2006), 139–157 | MR | Zbl

[9] Sturmfels B., Solving systems of polynomial equations, CBMS Reg. Conf. Ser. Math., 97, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[10] Leinartas E. K., Passare M., Tsikh A. K., “Mnogomernye versii teoremy Puankare dlya raznostnykh uravnenii”, Mat. sb., 199:10 (2008), 87–104 | DOI | MR | Zbl

[11] Pochekutov D. Yu., Tsikh A. K., “Ob asimptotike koeffitsientov Lorana i ee primenenii v statisticheskoi mekhanike”, Zhurn. Sib. feder. un-ta. Matematika i fizika, 2:4 (2009), 483–493

[12] Passare M., Tsikh A., “Amoebas: their spines and their contours”, Idempotent mathematics and mathematical physics, Proc. Int. Workshop (Vienna, 2003), Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 275–288 | DOI | MR | Zbl

[13] Kapranov M. M., “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290 (1991), 277–285 | DOI | MR | Zbl

[14] Curtis C. W., Reiner I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962 ; Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR | Zbl | MR

[15] Aizenberg L. A., Yuzhakov A. P., Integral representations and residues in multidimensional complex analysis, Transl. Math. Monogr., 58, Amer. Math. Soc., Providence, RI, 1983 | MR | Zbl

[16] Andreotti A., Frankel T., “The Lefschetz theorem on hyperplane sections”, Ann. Math. Ser. 2, 69 (1959), 713–717 | DOI | MR | Zbl

[17] Bott R., Tu L. W., Differential forms in algebraic topology, Grad. Texts Math., 82, Springer, New York, 1982 ; Bott R., Tu L. V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | DOI | MR | Zbl | MR | Zbl

[18] Leray J., “Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy. III)”, Bull. Soc. math. France, 87 (1959), 81–180 ; Lere Zh., Differentsialnoe i integralnoe ischisleniya na kompleksnom analiticheskom mnogoobrazii, Izd-vo inostr. lit., M., 1961 | MR | Zbl | MR

[19] Fotiadi D., Froissart M., Lascoux J., Pham F., “Applications of an isotopy theorem”, Topology, 4 (1965), 159–191 ; Fotiadi D., Fruassar M., Lasku Zh., Fam F., “Prilozhenie izotopicheskoi teoremy”, Dopolnenie 1 v knige: Khua R., Teplits V., Gomologiya i feinmanovskie integraly, Mir, M., 1969, 142–182 | DOI | MR | Zbl | MR