Method of interior variations and existence of $S$-compact sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 31-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variation of equilibrium energy is analyzed for three different functionals that naturally arise in solving a number of problems in the theory of constructive rational approximation of multivalued analytic functions. The variational approach is based on the relationship between the variation of the equilibrium energy and the equilibrium measure. In all three cases the following result is obtained: for the energy functional and the class of admissible compact sets corresponding to the problem, the arising stationary compact set is fully characterized by a certain symmetry property.
@article{TM_2012_279_a3,
     author = {V. I. Buslaev and A. Mart{\'\i}nez-Finkelshtein and S. P. Suetin},
     title = {Method of interior variations and existence of $S$-compact sets},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {31--58},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a3/}
}
TY  - JOUR
AU  - V. I. Buslaev
AU  - A. Martínez-Finkelshtein
AU  - S. P. Suetin
TI  - Method of interior variations and existence of $S$-compact sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 31
EP  - 58
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a3/
LA  - ru
ID  - TM_2012_279_a3
ER  - 
%0 Journal Article
%A V. I. Buslaev
%A A. Martínez-Finkelshtein
%A S. P. Suetin
%T Method of interior variations and existence of $S$-compact sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 31-58
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a3/
%G ru
%F TM_2012_279_a3
V. I. Buslaev; A. Martínez-Finkelshtein; S. P. Suetin. Method of interior variations and existence of $S$-compact sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 31-58. http://geodesic.mathdoc.fr/item/TM_2012_279_a3/

[1] Aptekarev A. I., “Asimptotika approksimatsii Ermita–Pade dlya pary funktsii s tochkami vetvleniya”, DAN, 422:4 (2008), 443–445 | MR | Zbl

[2] Aptekarev A. I., Buslaev V. I., Martines-Finkelshtein A., Suetin S. P., “Approksimatsii Pade, nepreryvnye drobi i ortogonalnye mnogochleny”, UMN, 66:6 (2011), 37–122 | DOI | MR | Zbl

[3] Aptekarev A., Khabibullin R., “Asimptoticheskie ryady dlya mnogochlenov, ortogonalnykh otnositelno kompleksnogo peremennogo vesa”, Tr. Mosk. mat. o-va, 68, 2007, 3–43 | MR | Zbl

[4] Aptekarev A. I., Kuijlaars A. B. J., Van Assche W., “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, Int. Math. Res. Pap., 2008 (2008), rpm007 | DOI | MR | Zbl

[5] Aptekarev A. I., Lysov V. G., Tulyakov D. N., “Sluchainye matritsy s vneshnim istochnikom i asimptotika sovmestno ortogonalnykh mnogochlenov”, Mat. sb., 202:2 (2011), 3–56 | DOI | MR | Zbl

[6] Bloom T., “Weighted approximation in $\mathbf C^N$”, Appendix B in book: Saff E. B., Totik V., Logarithmic potentials with external fields, Grundl. math. Wiss., 316, Springer, Berlin, 1997, 465–481 | MR

[7] Buslaev V. I., “O skhodimosti nepreryvnykh T-drobei”, Tr. MIAN, 235, 2001, 36–51 | MR | Zbl

[8] Buslaev V. I., “O skhodimosti mnogotochechnykh approksimatsii Pade kusochno analiticheskikh funktsii”, Mat. sb., 204:2 (2013), 39–72 | DOI | Zbl

[9] Deaño A., Huybrechs D., Kuijlaars A. B. J., “Asymptotic zero distribution of complex orthogonal polynomials associated with Gaussian quadrature”, J. Approx. Theory, 162:12 (2010), 2202–2224 | DOI | MR | Zbl

[10] Dubinin V. N., “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[11] Dubinin V. N., “Nekotorye svoistva vnutrennego privedennogo modulya”, Sib. mat. zhurn., 35:4 (1994), 774–792 | MR | Zbl

[12] Dubinin V. N., Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[13] Dubinin V. N., Karp D. B., Shlyk V. A., “Izbrannye zadachi geometricheskoi teorii funktsii i teorii potentsiala”, Dalnevost. mat. zhurn., 8:1 (2008), 46–95 | MR

[14] Gonchar A. A., “Ratsionalnye approksimatsii analiticheskikh funktsii”, Sovr. probl. matematiki, 1, 2003, 83–106 | DOI | MR

[15] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN, 157, 1981, 31–48 | MR | Zbl

[16] Gonchar A. A., Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Mat. sb., 125(167):1 (1984), 117–127 | MR | Zbl

[17] Gonchar A. A., Rakhmanov E. A., “O zadache ravnovesiya dlya vektornykh potentsialov”, UMN, 40:4 (1985), 155–156 | MR | Zbl

[18] Gonchar A. A., Rakhmanov E. A., “Ravnovesnye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Mat. sb., 134(176):3 (1987), 306–352 | MR | Zbl

[19] Gonchar A. A., Rakhmanov E. A., Suetin S. P., “O skhodimosti approksimatsii Pade ortogonalnykh razlozhenii”, Tr. MIAN, 200, 1991, 136–146 | MR | Zbl

[20] Gonchar A. A., Rakhmanov E. A., Suetin S. P., “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in approximation theory: An international perspective, Springer, New York, 1992, 169–190 | DOI | MR | Zbl

[21] Gonchar A. A., Rakhmanov E. A., Suetin S. P., O skhodimosti approksimatsii Chebysheva–Pade dlya veschestvennykh algebraicheskikh funktsii, E-print, 2010, arXiv: 1009.4813[math.CV]

[22] Gonchar A. A., Rakhmanov E. A., Suetin S. P., “Approksimatsii Pade–Chebysheva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnykh kompaktov”, UMN, 66:6 (2011), 3–36 | DOI | MR | Zbl

[23] Kamvissis S., Rakhmanov E. A., “Existence and regularity for an energy maximization problem in two dimensions”, J. Math. Phys., 46:8 (2005), 083505 | DOI | MR | Zbl

[24] Kuijlaars A. B. J., Martínez-Finkelshtein A., “Strong asymptotics for Jacobi polynomials with varying nonstandard parameters”, J. anal. math., 94 (2004), 195–234 | DOI | MR | Zbl

[25] Kuzmina G. V., Moduli semeistv krivykh i kvadratichnye differentsialy, Tr. MIAN, 139, Nauka, L., 1980 | MR | Zbl

[26] Kuzmina G. V., “Metody geometricheskoi teorii funktsii. I”, Algebra i analiz, 9:3 (1997), 41–103 | MR | Zbl

[27] Kuzmina G. V., “Metody geometricheskoi teorii funktsii. II”, Algebra i analiz, 9:5 (1997), 1–50 | MR | Zbl

[28] Kuzmina G. V., “Gennadii Mikhailovich Goluzin i geometricheskaya teoriya funktsii”, Algebra i analiz, 18:3 (2006), 3–38 | MR | Zbl

[29] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[30] Lapik M. A., “O nositele ekstremalnoi mery v vektornoi zadache ravnovesiya”, Mat. sb., 197:8 (2006), 101–118 | DOI | MR | Zbl

[31] Martínez-Finkelshtein A., “Trajectories of quadratic differentials and approximations of exponents on the semiaxis”, Complex methods in approximation theory, Proc. Workshop (Almería, Spain, 1995), Monogr. Cienc. Tecnol., 2, Univ. Almería, Almería, 1997, 69–84 | MR | Zbl

[32] Martínez-Finkelshtein A., Martínez-González P., Orive R., “Zeros of Jacobi polynomials with varying non-classical parameters”, Special functions, Proc. Workshop (Hong Kong, 1999), World Sci., Singapore, 2000, 98–113 | MR | Zbl

[33] Martínez-Finkelshtein A., Martínez-González P., Orive R., “On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters”, J. Comput. Appl. Math., 133:1–2 (2001), 477–487 | MR | Zbl

[34] Martínez-Finkelshtein A., Orive R., “Riemann–Hilbert analysis for Jacobi polynomials orthogonal on a single contour”, J. Approx. Theory, 134:2 (2005), 137–170 | DOI | MR | Zbl

[35] Martínez-Finkelshtein A., Rakhmanov E. A., “On asymptotic behavior of Heine–Stieltjes and Van Vleck polynomials”, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., 507, Amer. Math. Soc., Providence, RI, 2010, 209–232 | DOI | MR | Zbl

[36] Martínez-Finkelshtein A., Rakhmanov E. A., “Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials”, Commun. Math. Phys., 302:1 (2011), 53–111 ; arXiv: 0902.0193[math.CA] | DOI | MR | Zbl

[37] Martines-Finkelshtein A., Rakhmanov E. A., Suetin S. P., “Variatsiya ravnovesnoi mery i $S$-svoistvo statsionarnogo kompakta”, UMN, 66:1 (2011), 183–184 | DOI | MR | Zbl

[38] Martines-Finkelshtein A., Rakhmanov E. A., Suetin S. P., “Variatsiya ravnovesnoi energii i $S$-svoistvo statsionarnogo kompakta”, Mat. sb., 202:12 (2011), 113–136 | DOI | MR

[39] Martínez-Finkelshtein A., Rakhmanov E. A., Suetin S. P., “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall's work 25 years later”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 165–193 | DOI | MR

[40] Mhaskar H. N., Saff E. B., “Extremal problems for polynomials with exponential weights”, Trans. Amer. Math. Soc., 285:1 (1984), 203–234 | DOI | MR | Zbl

[41] Mhaskar H. N., Saff E. B., “Weighted polynomials on finite and infinite intervals: a unified approach”, Bull. Amer. Math. Soc., 11:2 (1984), 351–354 | DOI | MR | Zbl

[42] Perevoznikova E. A., Rakhmanov E. A., Variatsiya ravnovesnoi energii i $S$-svoistvo kompaktov minimalnoi emkosti, Preprint, M., 1994

[43] Rakhmanov E. A., “Orthogonal polynomials and $S$-curves”, Recent advances in orthogonal polynomials, special functions, and their applications, Contemp. Math., 578, Amer. Math. Soc., Providence, RI, 2012, 195–239 ; arXiv: 1112.5713[math.CV] | DOI | MR

[44] Stahl H., “Extremal domains associated with an analytic function. I”, Complex Variables, Theory Appl., 4 (1985), 311–324 | DOI | MR | Zbl

[45] Stahl H., “Extremal domains associated with an analytic function. II”, Complex Variables, Theory Appl., 4 (1985), 325–338 | DOI | Zbl

[46] Stahl H., “The structure of extremal domains associated with an analytic function”, Complex Variables, Theory Appl., 4 (1985), 339–354 | DOI | MR | Zbl

[47] Stahl H., “Orthogonal polynomials with complex-valued weight function. I”, Constr. Approx., 2 (1986), 225–240 | DOI | MR | Zbl

[48] Stahl H., “Orthogonal polynomials with complex-valued weight function. II”, Constr. Approx., 2 (1986), 241–251 | DOI | MR | Zbl

[49] Stahl H., “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91:2 (1997), 139–204 | DOI | MR | Zbl

[50] Suetin S. P., “Nekotoryi analog variatsionnykh formul Adamara i Shiffera”, TMF, 170:3 (2012), 335–341 | DOI | MR | Zbl