Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 269-287
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove an extension theorem for roots and logarithms of holomorphic line bundles across strictly pseudoconcave boundaries: they extend in all cases except one, when the dimension and Morse index of a critical point is 2. In that case we give an explicit description of obstructions to the extension.
@article{TM_2012_279_a17,
     author = {S. Ivashkovich},
     title = {Bochner{\textendash}Hartogs type extension theorem for roots and logarithms of holomorphic line bundles},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {269--287},
     year = {2012},
     volume = {279},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a17/}
}
TY  - JOUR
AU  - S. Ivashkovich
TI  - Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 269
EP  - 287
VL  - 279
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a17/
LA  - en
ID  - TM_2012_279_a17
ER  - 
%0 Journal Article
%A S. Ivashkovich
%T Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 269-287
%V 279
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a17/
%G en
%F TM_2012_279_a17
S. Ivashkovich. Bochner–Hartogs type extension theorem for roots and logarithms of holomorphic line bundles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 269-287. http://geodesic.mathdoc.fr/item/TM_2012_279_a17/

[1] Bochner S., “A theorem on analytic continuation of functions in several variables”, Ann. Math. Ser. 2, 39:1 (1938), 14–19 | DOI | MR | Zbl

[2] Chern S. S., Complex manifolds, Univ. Chicago, Chicago, 1956

[3] Dethloff G.-E., “A new proof of a theorem of Grauert and Remmert by $L_2$-methods”, Math. Ann., 286 (1990), 129–142 | DOI | MR | Zbl

[4] Forstnerič F., “Stein domains in complex surfaces”, J. Geom. Anal., 13:1 (2003), 77–94 | DOI | MR | Zbl

[5] Frenkel J., “Cohomologie non abélienne et espaces fibrés”, Bull. Soc. math. France, 85 (1957), 135–220 | MR | Zbl

[6] Friedman R., Algebraic surfaces and holomorphic vector bundles, Universitext, Springer, New York, 1998 | DOI | MR

[7] Grauert H., Remmert R., “Komplexe Räume”, Math. Ann., 136 (1958), 245–318 | DOI | MR | Zbl

[8] Grauert H., Remmert R., Theorie der Steinschen Räume, Springer, Berlin, 1977 | MR

[9] Ivashkovich S. M., “Envelopes of holomorphy of some tube sets in $\mathbf C^2$ and the monodromy theorem”, Math. USSR. Izv., 19:1 (1982), 189–196 | DOI | MR | Zbl | Zbl

[10] Ivashkovich S. M., “The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds”, Invent. math., 109 (1992), 47–54 | DOI | MR | Zbl

[11] Ivashkovich S. M., “Prodolzhenie analiticheskikh ob'ektov metodom Kartana–Tullena”, Kompleksnyi analiz i matematicheskaya fizika, In-t fiziki SO AN SSSR, Krasnoyarsk, 1988, 53–61 | MR

[12] Nemirovskii S. Yu., “Holomorphic functions and embedded real surfaces”, Math. Notes, 63 (1998), 527–532 | DOI | DOI | MR | Zbl

[13] Nishino T., Function theory in several complex variables, Transl. Math. Monogr., 193, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[14] Norguet F., Siu Y.-T., “Holomorphic convexity of spaces of analytic cycles”, Bull. Soc. math. France, 105 (1977), 191–223 | MR | Zbl

[15] Ohsawa T., “Nonexistence of real analytic Levi flat hypersurfaces in $\mathbb P^2$”, Nagoya Math. J., 158 (2000), 95–98 | MR | Zbl

[16] Royden H. L., “The extension of regular holomorphic maps”, Proc. Amer. Math. Soc., 43:2 (1974), 306–310 | DOI | MR | Zbl

[17] Siu Y.-T., “A Hartogs type extension theorem for coherent analytic sheaves”, Ann. Math. Ser. 2, 93 (1971), 166–188 | DOI | MR | Zbl

[18] Siu Y.-T., Techniques of extension of analytic objects, M. Dekker, New York, 1974 | MR | Zbl

[19] Siu Y.-T., Trautmann G., Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes. Math., 172, Springer, Berlin, 1971 | MR | Zbl

[20] Stolzenberg G., “Polynomially and rationally convex sets”, Acta math., 109 (1963), 259–289 | DOI | MR | Zbl