Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 269-287

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an extension theorem for roots and logarithms of holomorphic line bundles across strictly pseudoconcave boundaries: they extend in all cases except one, when the dimension and Morse index of a critical point is 2. In that case we give an explicit description of obstructions to the extension.
@article{TM_2012_279_a17,
     author = {S. Ivashkovich},
     title = {Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {269--287},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a17/}
}
TY  - JOUR
AU  - S. Ivashkovich
TI  - Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 269
EP  - 287
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a17/
LA  - en
ID  - TM_2012_279_a17
ER  - 
%0 Journal Article
%A S. Ivashkovich
%T Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 269-287
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a17/
%G en
%F TM_2012_279_a17
S. Ivashkovich. Bochner--Hartogs type extension theorem for roots and logarithms of holomorphic line bundles. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 269-287. http://geodesic.mathdoc.fr/item/TM_2012_279_a17/