Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_279_a16, author = {A. V. Isaev}, title = {Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {257--268}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a16/} }
TY - JOUR AU - A. V. Isaev TI - Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 257 EP - 268 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_279_a16/ LA - en ID - TM_2012_279_a16 ER -
%0 Journal Article %A A. V. Isaev %T Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 257-268 %V 279 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2012_279_a16/ %G en %F TM_2012_279_a16
A. V. Isaev. Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 257-268. http://geodesic.mathdoc.fr/item/TM_2012_279_a16/
[1] Arnold V. I., “Local normal forms of functions”, Invent. math., 35 (1976), 87–109 | DOI | MR | Zbl
[2] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82 (1963), 8–28 | DOI | MR | Zbl
[3] Dieudonné J. A., Carrell J. B., “Invariant theory, old and new”, Adv. Math., 4 (1970), 1–80 | DOI | MR | Zbl
[4] Eastwood M. G., “Moduli of isolated hypersurface singularities”, Asian J. Math., 8 (2004), 305–314 | DOI | MR | Zbl
[5] Elliott E. B., An introduction to the algebra of quantics, Clarendon Press, Oxford, 1895 | Zbl
[6] Fels G., Isaev A., Kaup W., Kruzhilin N., “Isolated hypersurface singularities and special polynomial realizations of affine quadrics”, J. Geom. Anal., 21 (2011), 767–782 | DOI | MR | Zbl
[7] Fels G., Kaup W., “Nilpotent algebras and affinely homogeneous surfaces”, Math. Ann., 353 (2012), 1315–1350 | DOI | MR | Zbl
[8] Greuel G.-M., Lossen C., Shustin E., Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin, 2007 | MR | Zbl
[9] Huneke C., “Hyman Bass and ubiquity: Gorenstein rings”, Algebra, $K$-theory, groups, and education, Proc. conf. (New York, 1997), Contemp. Math., 243, Amer. Math. Soc., Providence, RI, 1999, 55–78 | DOI | MR | Zbl
[10] Isaev A. V., “On the affine homogeneity of algebraic hypersurfaces arising from Gorenstein algebras”, Asian J. Math., 15 (2011), 631–640 | DOI | MR | Zbl
[11] Kang C., “Analytic classification of plane curve singularities defined by some homogeneous polynomials”, J. Korean Math. Soc., 30 (1993), 385–397 | MR | Zbl
[12] Kang C., Kim S. M., “Topological and analytic classification of plane curve singularities defined by $z^n+a(y)z+b(y)$ with multiplicity $n$ and its application”, J. Korean Math. Soc., 26 (1989), 181–188 | MR | Zbl
[13] Kraft H., Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Vieweg, Braunschweig, 1984 | MR | Zbl
[14] Mather J. N., Yau S. S.-T., “Classification of isolated hypersurface singularities by their moduli algebras”, Invent. Math., 69 (1982), 243–251 | DOI | MR | Zbl
[15] Mukai S., An introduction to invariants and moduli, Cambridge Stud. Adv. Math., 81, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[16] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergebn. Math. Grenzgeb., 34, Springer, Berlin, 1994 | MR
[17] Olver P. J., Classical invariant theory, LMS Stud. Texts, 44, Cambridge Univ. Press, Cambridge, 1999 | MR
[18] Orlik P., Solomon L., “Singularities. II: Automorphisms of forms”, Math. Ann., 231 (1978), 229–240 | DOI | MR | Zbl
[19] Saito K., “Einfach-elliptische Singularitäten”, Invent. Math., 23 (1974), 289–325 | DOI | MR | Zbl
[20] Stepanović V., Lipkovski A., “Analytic equivalence of plane curve singularities $y^n+x^\alpha y+x^\beta A(x)=0$”, Publ. Inst. Math. (Beograd). Nouv. sér., 81 (2007), 69–78 | DOI | MR | Zbl
[21] Sylvester J. J., “Tables of the generating functions and groundforms for the binary quantics of the first ten orders”, Amer. J. Math., 2 (1879), 223–251 ; The collected mathematical papers, v. 3, Cambridge Univ. Press, Cambridge, 1909, 283–311 | DOI | MR