Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 257-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use classical invariant theory to solve the biholomorphic equivalence problem for two families of plane curve singularities previously considered in the literature. Our calculations motivate an intriguing conjecture that proposes a method for extracting a complete set of invariants of homogeneous plane curve singularities from their moduli algebras.
@article{TM_2012_279_a16,
     author = {A. V. Isaev},
     title = {Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {257--268},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a16/}
}
TY  - JOUR
AU  - A. V. Isaev
TI  - Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 257
EP  - 268
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a16/
LA  - en
ID  - TM_2012_279_a16
ER  - 
%0 Journal Article
%A A. V. Isaev
%T Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 257-268
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a16/
%G en
%F TM_2012_279_a16
A. V. Isaev. Application of classical invariant theory to biholomorphic classification of plane curve singularities, and associated binary forms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 257-268. http://geodesic.mathdoc.fr/item/TM_2012_279_a16/

[1] Arnold V. I., “Local normal forms of functions”, Invent. math., 35 (1976), 87–109 | DOI | MR | Zbl

[2] Bass H., “On the ubiquity of Gorenstein rings”, Math. Z., 82 (1963), 8–28 | DOI | MR | Zbl

[3] Dieudonné J. A., Carrell J. B., “Invariant theory, old and new”, Adv. Math., 4 (1970), 1–80 | DOI | MR | Zbl

[4] Eastwood M. G., “Moduli of isolated hypersurface singularities”, Asian J. Math., 8 (2004), 305–314 | DOI | MR | Zbl

[5] Elliott E. B., An introduction to the algebra of quantics, Clarendon Press, Oxford, 1895 | Zbl

[6] Fels G., Isaev A., Kaup W., Kruzhilin N., “Isolated hypersurface singularities and special polynomial realizations of affine quadrics”, J. Geom. Anal., 21 (2011), 767–782 | DOI | MR | Zbl

[7] Fels G., Kaup W., “Nilpotent algebras and affinely homogeneous surfaces”, Math. Ann., 353 (2012), 1315–1350 | DOI | MR | Zbl

[8] Greuel G.-M., Lossen C., Shustin E., Introduction to singularities and deformations, Springer Monogr. Math., Springer, Berlin, 2007 | MR | Zbl

[9] Huneke C., “Hyman Bass and ubiquity: Gorenstein rings”, Algebra, $K$-theory, groups, and education, Proc. conf. (New York, 1997), Contemp. Math., 243, Amer. Math. Soc., Providence, RI, 1999, 55–78 | DOI | MR | Zbl

[10] Isaev A. V., “On the affine homogeneity of algebraic hypersurfaces arising from Gorenstein algebras”, Asian J. Math., 15 (2011), 631–640 | DOI | MR | Zbl

[11] Kang C., “Analytic classification of plane curve singularities defined by some homogeneous polynomials”, J. Korean Math. Soc., 30 (1993), 385–397 | MR | Zbl

[12] Kang C., Kim S. M., “Topological and analytic classification of plane curve singularities defined by $z^n+a(y)z+b(y)$ with multiplicity $n$ and its application”, J. Korean Math. Soc., 26 (1989), 181–188 | MR | Zbl

[13] Kraft H., Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Vieweg, Braunschweig, 1984 | MR | Zbl

[14] Mather J. N., Yau S. S.-T., “Classification of isolated hypersurface singularities by their moduli algebras”, Invent. Math., 69 (1982), 243–251 | DOI | MR | Zbl

[15] Mukai S., An introduction to invariants and moduli, Cambridge Stud. Adv. Math., 81, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[16] Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergebn. Math. Grenzgeb., 34, Springer, Berlin, 1994 | MR

[17] Olver P. J., Classical invariant theory, LMS Stud. Texts, 44, Cambridge Univ. Press, Cambridge, 1999 | MR

[18] Orlik P., Solomon L., “Singularities. II: Automorphisms of forms”, Math. Ann., 231 (1978), 229–240 | DOI | MR | Zbl

[19] Saito K., “Einfach-elliptische Singularitäten”, Invent. Math., 23 (1974), 289–325 | DOI | MR | Zbl

[20] Stepanović V., Lipkovski A., “Analytic equivalence of plane curve singularities $y^n+x^\alpha y+x^\beta A(x)=0$”, Publ. Inst. Math. (Beograd). Nouv. sér., 81 (2007), 69–78 | DOI | MR | Zbl

[21] Sylvester J. J., “Tables of the generating functions and groundforms for the binary quantics of the first ten orders”, Amer. J. Math., 2 (1879), 223–251 ; The collected mathematical papers, v. 3, Cambridge Univ. Press, Cambridge, 1909, 283–311 | DOI | MR