$C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 219-226

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider several settings for $C^m$-subharmonic extension and $C^m$-harmonic approximation problems of Runge type in Euclidean domains.
@article{TM_2012_279_a13,
     author = {A. Boivin and P. M. Gauthier and P. V. Paramonov},
     title = {$C^m$-subharmonic extension of {Runge} type from closed to open subsets of $\mathbb R^n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {219--226},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a13/}
}
TY  - JOUR
AU  - A. Boivin
AU  - P. M. Gauthier
AU  - P. V. Paramonov
TI  - $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 219
EP  - 226
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a13/
LA  - en
ID  - TM_2012_279_a13
ER  - 
%0 Journal Article
%A A. Boivin
%A P. M. Gauthier
%A P. V. Paramonov
%T $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 219-226
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a13/
%G en
%F TM_2012_279_a13
A. Boivin; P. M. Gauthier; P. V. Paramonov. $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 219-226. http://geodesic.mathdoc.fr/item/TM_2012_279_a13/