Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_279_a13, author = {A. Boivin and P. M. Gauthier and P. V. Paramonov}, title = {$C^m$-subharmonic extension of {Runge} type from closed to open subsets of $\mathbb R^n$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {219--226}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a13/} }
TY - JOUR AU - A. Boivin AU - P. M. Gauthier AU - P. V. Paramonov TI - $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 219 EP - 226 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_279_a13/ LA - en ID - TM_2012_279_a13 ER -
%0 Journal Article %A A. Boivin %A P. M. Gauthier %A P. V. Paramonov %T $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2012 %P 219-226 %V 279 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2012_279_a13/ %G en %F TM_2012_279_a13
A. Boivin; P. M. Gauthier; P. V. Paramonov. $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 219-226. http://geodesic.mathdoc.fr/item/TM_2012_279_a13/