$C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 219-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider several settings for $C^m$-subharmonic extension and $C^m$-harmonic approximation problems of Runge type in Euclidean domains.
@article{TM_2012_279_a13,
     author = {A. Boivin and P. M. Gauthier and P. V. Paramonov},
     title = {$C^m$-subharmonic extension of {Runge} type from closed to open subsets of $\mathbb R^n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {219--226},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a13/}
}
TY  - JOUR
AU  - A. Boivin
AU  - P. M. Gauthier
AU  - P. V. Paramonov
TI  - $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 219
EP  - 226
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a13/
LA  - en
ID  - TM_2012_279_a13
ER  - 
%0 Journal Article
%A A. Boivin
%A P. M. Gauthier
%A P. V. Paramonov
%T $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 219-226
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a13/
%G en
%F TM_2012_279_a13
A. Boivin; P. M. Gauthier; P. V. Paramonov. $C^m$-subharmonic extension of Runge type from closed to open subsets of $\mathbb R^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 219-226. http://geodesic.mathdoc.fr/item/TM_2012_279_a13/

[1] Gauthier P. M., “Subharmonic extensions and approximations”, Can. Math. Bull., 37 (1994), 46–53 | DOI | MR | Zbl

[2] Gardiner S. J., “Superharmonic extension and harmonic approximation”, Ann. Inst. Fourier, 44 (1994), 65–91 | DOI | MR | Zbl

[3] Paramonov P. V., “$C^m$-extension of subharmonic functions”, Izv. Math., 69 (2005), 1211–1223 | DOI | DOI | MR | Zbl

[4] Paramonov P. V., “On $C^m$-extension of subharmonic functions from Lyapunov–Dini domains to $\mathbb R^N$”, Math. Notes, 89 (2011), 160–164 | DOI | DOI | MR | Zbl

[5] Vitushkin A. G., “The analytic capacity of sets in problems of approximation theory”, Russ. Math. Surv., 22:6 (1967), 139–200 | DOI | MR | Zbl | Zbl

[6] O'Farrell A. G., “Metaharmonic approximation in Lipschitz norms”, Proc. R. Ir. Acad. A, 75 (1975), 317–330 | MR | Zbl

[7] Paramonov P. V., “On harmonic approximation in the $C^1$-norm”, Math. USSR, Sb., 71 (1992), 183–207 | DOI | MR | Zbl | Zbl

[8] Verdera J., “$C^m$ approximation by solutions of elliptic equations, and Calderón–Zygmund operators”, Duke Math. J., 55 (1987), 157–187 | DOI | MR | Zbl

[9] Narasimhan R., Analysis on real and complex manifolds, North-Holland, Amsterdam, 1968 | MR | Zbl

[10] Keldysh M. V., Lavrentev M. A., “Ob odnoi otsenke dlya funktsii Grina”, DAN SSSR, 24:2 (1939), 102–103 | Zbl

[11] Widman K.-O., “Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations”, Math. scand., 21 (1967), 17–37 | MR | Zbl

[12] Boivin A., Gauthier P. M., Paramonov P. V., “Approximation on closed sets by analytic or meromorphic solutions of elliptic equations and applications”, Can. J. Math., 54:5 (2002), 945–969 | DOI | MR | Zbl

[13] Gardiner S. J., Harmonic approximation, LMS Lect. Note Ser., 221, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[14] Vladimirov V. S., Equations of mathematical physics, M. Dekker, New York, 1971 | MR | MR | Zbl | Zbl