Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_279_a10, author = {A. Sadullaev and B. Abdullaev}, title = {Potential theory in the class of $m$-subharmonic functions}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {166--192}, publisher = {mathdoc}, volume = {279}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a10/} }
TY - JOUR AU - A. Sadullaev AU - B. Abdullaev TI - Potential theory in the class of $m$-subharmonic functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 166 EP - 192 VL - 279 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_279_a10/ LA - ru ID - TM_2012_279_a10 ER -
A. Sadullaev; B. Abdullaev. Potential theory in the class of $m$-subharmonic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 166-192. http://geodesic.mathdoc.fr/item/TM_2012_279_a10/
[1] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl
[2] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya nekotorykh uravnenii tipa Monzha–Ampera”, Mat. sb., 128(170):3 (1985), 403–415 | MR | Zbl
[3] Krylov N. V., “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya v oblasti”, Izv. AN SSSR. Ser. mat., 47:1 (1983), 75–108 | MR | Zbl
[4] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[5] Uermer Dzh., Teoriya potentsiala, Mir, M., 1980 | MR
[6] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980
[7] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR | Zbl
[8] Sadullaev A., “Operator $(dd^c u)^n$ i emkosti kondensatorov”, DAN SSSR, 251:1 (1980), 44–47 | MR | Zbl
[9] Sadullaev A., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl
[10] Sadullaev A., “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Mat. sb., 119(161):1 (1982), 96–118 | MR | Zbl
[11] Błocki Z., “The domain of definition of the complex Monge–Ampère operator”, Amer. J. Math., 128:2 (2006), 519–530 | DOI | MR
[12] Błocki Z., “Weak solutions to the complex Hessian equation”, Ann. Inst. Fourier, 55:5 (2005), 1735–1756 | DOI | MR | Zbl
[13] Bedford E., Taylor B. A., “The Dirichlet problem for a complex Monge–Ampère equation”, Invent. math., 37:1 (1976), 1–44 | DOI | MR | Zbl
[14] Bedford E., Taylor B. A., “A new capacity for plurisubharmonic functions”, Acta math., 149 (1982), 1–40 | DOI | MR | Zbl
[15] Chern S. S., Levine H. I., Nirenberg L., “Intrinsic norms on a complex manifold”, Global analysis, Papers in honor of K. Kodaira, Univ. Tokyo Press, Princeton, NJ, 1969, 119–139 | MR
[16] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalues of the Hessian”, Acta math., 155 (1985), 261–301 | DOI | MR | Zbl
[17] Dinew S., Kołodziej S., A priori estimates for the complex Hessian equations, E-print, 2011, arXiv: 1112.3063v1[math.CV]
[18] Gårding L., “An inequality for hyperbolic polynomials”, J. Math. Mech., 8 (1959), 957–965 | MR
[19] Josefson B., “On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on $\mathbf C^n$”, Ark. Mat., 16 (1978), 109–115 | DOI | MR | Zbl
[20] Lelong P., Fonctions plurisousharmoniques et formes différentielles positives, Dunod, Paris; Gordon Breach, New York, 1968 | MR | Zbl
[21] Li S.-Y., “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, Asian J. Math., 8 (2004), 87–106 | DOI | MR | Zbl | Zbl
[22] Trudinger N. S., “On the Dirichlet problem for Hessian equations”, Acta math., 175 (1995), 151–164 | DOI | MR | Zbl
[23] Trudinger N. S., Wang X.-J., “Hessian measures. II”, Ann. Math. Ser. 2, 150 (1999), 579–604 | DOI | MR | Zbl