Potential theory in the class of $m$-subharmonic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 166-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

A potential theory for the equation $(dd^\mathrm cu)^m\wedge\beta^{n-m}=f\beta^n$, $1\le m\le n$, is developed. The corresponding notions of $m$-capacity and $m$-subharmonic functions are introduced, and their properties are studied.
@article{TM_2012_279_a10,
     author = {A. Sadullaev and B. Abdullaev},
     title = {Potential theory in the class of $m$-subharmonic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {166--192},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a10/}
}
TY  - JOUR
AU  - A. Sadullaev
AU  - B. Abdullaev
TI  - Potential theory in the class of $m$-subharmonic functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 166
EP  - 192
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a10/
LA  - ru
ID  - TM_2012_279_a10
ER  - 
%0 Journal Article
%A A. Sadullaev
%A B. Abdullaev
%T Potential theory in the class of $m$-subharmonic functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 166-192
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a10/
%G ru
%F TM_2012_279_a10
A. Sadullaev; B. Abdullaev. Potential theory in the class of $m$-subharmonic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 166-192. http://geodesic.mathdoc.fr/item/TM_2012_279_a10/

[1] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[2] Ivochkina N. M., “Reshenie zadachi Dirikhle dlya nekotorykh uravnenii tipa Monzha–Ampera”, Mat. sb., 128(170):3 (1985), 403–415 | MR | Zbl

[3] Krylov N. V., “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya v oblasti”, Izv. AN SSSR. Ser. mat., 47:1 (1983), 75–108 | MR | Zbl

[4] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[5] Uermer Dzh., Teoriya potentsiala, Mir, M., 1980 | MR

[6] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[7] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR | Zbl

[8] Sadullaev A., “Operator $(dd^c u)^n$ i emkosti kondensatorov”, DAN SSSR, 251:1 (1980), 44–47 | MR | Zbl

[9] Sadullaev A., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl

[10] Sadullaev A., “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Mat. sb., 119(161):1 (1982), 96–118 | MR | Zbl

[11] Błocki Z., “The domain of definition of the complex Monge–Ampère operator”, Amer. J. Math., 128:2 (2006), 519–530 | DOI | MR

[12] Błocki Z., “Weak solutions to the complex Hessian equation”, Ann. Inst. Fourier, 55:5 (2005), 1735–1756 | DOI | MR | Zbl

[13] Bedford E., Taylor B. A., “The Dirichlet problem for a complex Monge–Ampère equation”, Invent. math., 37:1 (1976), 1–44 | DOI | MR | Zbl

[14] Bedford E., Taylor B. A., “A new capacity for plurisubharmonic functions”, Acta math., 149 (1982), 1–40 | DOI | MR | Zbl

[15] Chern S. S., Levine H. I., Nirenberg L., “Intrinsic norms on a complex manifold”, Global analysis, Papers in honor of K. Kodaira, Univ. Tokyo Press, Princeton, NJ, 1969, 119–139 | MR

[16] Caffarelli L., Nirenberg L., Spruck J., “The Dirichlet problem for nonlinear second order elliptic equations. III: Functions of the eigenvalues of the Hessian”, Acta math., 155 (1985), 261–301 | DOI | MR | Zbl

[17] Dinew S., Kołodziej S., A priori estimates for the complex Hessian equations, E-print, 2011, arXiv: 1112.3063v1[math.CV]

[18] Gårding L., “An inequality for hyperbolic polynomials”, J. Math. Mech., 8 (1959), 957–965 | MR

[19] Josefson B., “On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on $\mathbf C^n$”, Ark. Mat., 16 (1978), 109–115 | DOI | MR | Zbl

[20] Lelong P., Fonctions plurisousharmoniques et formes différentielles positives, Dunod, Paris; Gordon Breach, New York, 1968 | MR | Zbl

[21] Li S.-Y., “On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian”, Asian J. Math., 8 (2004), 87–106 | DOI | MR | Zbl | Zbl

[22] Trudinger N. S., “On the Dirichlet problem for Hessian equations”, Acta math., 175 (1995), 151–164 | DOI | MR | Zbl

[23] Trudinger N. S., Wang X.-J., “Hessian measures. II”, Ann. Math. Ser. 2, 150 (1999), 579–604 | DOI | MR | Zbl