Potential theory in the class of $m$-subharmonic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 166-192

Voir la notice de l'article provenant de la source Math-Net.Ru

A potential theory for the equation $(dd^\mathrm cu)^m\wedge\beta^{n-m}=f\beta^n$, $1\le m\le n$, is developed. The corresponding notions of $m$-capacity and $m$-subharmonic functions are introduced, and their properties are studied.
@article{TM_2012_279_a10,
     author = {A. Sadullaev and B. Abdullaev},
     title = {Potential theory in the class of $m$-subharmonic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {166--192},
     publisher = {mathdoc},
     volume = {279},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_279_a10/}
}
TY  - JOUR
AU  - A. Sadullaev
AU  - B. Abdullaev
TI  - Potential theory in the class of $m$-subharmonic functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 166
EP  - 192
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_279_a10/
LA  - ru
ID  - TM_2012_279_a10
ER  - 
%0 Journal Article
%A A. Sadullaev
%A B. Abdullaev
%T Potential theory in the class of $m$-subharmonic functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 166-192
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_279_a10/
%G ru
%F TM_2012_279_a10
A. Sadullaev; B. Abdullaev. Potential theory in the class of $m$-subharmonic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 279 (2012), pp. 166-192. http://geodesic.mathdoc.fr/item/TM_2012_279_a10/