Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_278_a9, author = {N. I. Zhukova}, title = {Compact leaves of structurally stable foliations}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {102--113}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a9/} }
N. I. Zhukova. Compact leaves of structurally stable foliations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 102-113. http://geodesic.mathdoc.fr/item/TM_2012_278_a9/
[1] Andronov A.A., Pontryagin L.S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250 | MR | Zbl
[2] Anosov D.V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl
[3] Anosov D.V., O razvitii teorii dinamicheskikh sistem za poslednyuyu chetvert veka, 1998 http://ium.mccme.ru/postscript/stnotes/anosov.ps.gz | Zbl
[4] Palis J., “A global perspective for non-conservative dynamics”, Ann. Inst. H. Poincaré. Anal. non linéaire, 22 (2005), 485–507 | DOI | MR | Zbl
[5] Smeil S., “Matematicheskie problemy sleduyuschego stoletiya”: Simo K., Smeil S., Shensine A. i dr., Sovremennye problemy khaosa i nelineinosti, In-t kompyut. issled., Izhevsk, 2002, 280–303
[6] Mañé R., “A proof of the $C^1$ stability conjecture”, Publ. math. Inst. hautes étud. sci., 66 (1988), 161–210 | DOI | MR | Zbl
[7] Pujals E.R., “Some simple questions related to the $C^r$ stability conjecture”, Nonlinearity, 21:11 (2008), T233–T237 | DOI | MR | Zbl
[8] Katok A., Spatzier R.J., “Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions”, Tr. MIAN, 216, 1997, 292–319 | MR | Zbl
[9] Brunella M., “Remarks on structurally stable proper foliations”, Math. Proc. Cambridge Philos. Soc., 115:1 (1994), 111–120 | DOI | MR | Zbl
[10] Langevin R., “A list of questions about foliations”, Differential topology, foliations, and group actions, Contemp. Math., 161, Amer. Math. Soc., Providence, RI, 1994, 59–80 | DOI | MR | Zbl
[11] Zhukova N.I., Chubarov G.V., “Kriterii strukturnoi ustoichivosti nadstroechnykh sloenii”, Vestn. Nizhegorod. gos. un-ta, 2011, no. 1, 153–161
[12] Grossi Sad R.G., “A $\mathbf Z\times \mathbf Z$ structurally stable action”, Trans. Amer. Math. Soc., 260 (1980), 515–525 | DOI | MR | Zbl
[13] Levine H.I., Shub M., “Stability of foliations”, Trans. Amer. Math. Soc., 184 (1973), 419–437 | DOI | MR
[14] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR
[15] Kopell N., “Commuting diffeomorphisms”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 165–184 | DOI | MR
[16] Palis J., Yoccoz J.C., “Regidity of centralizers of diffeomorphisms”, Ann. sci. Éc. norm. supér. Sér. 4, 22 (1989), 81–98 | MR | Zbl
[17] Bonatti C., Crovisier S., Wilkinson A., “The $C^1$-generic diffeomorphism has trivial centralizer”, Publ. math. Inst. hautes étud. sci., 109 (2009), 185–244 | DOI | MR | Zbl
[18] Kupka I., “On two notions of structural stability”, J. Diff. Geom., 9 (1974), 639–644 | MR | Zbl
[19] Epstein D.B.A., “A topology for the space of foliations”, Geometry and topology, Lect. Notes Math., 597, Springer, Berlin, 1977, 132–150 | DOI | MR
[20] Kallman R.R., “Uniqueness results for homeomorphism groups”, Trans. Amer. Math. Soc., 295 (1986), 389–396 | DOI | MR | Zbl
[21] Anderson B., “Diffeomorphisms with discrete centralizer”, Topology, 15 (1976), 143–147 | DOI | MR | Zbl
[22] Palis J., “Rigidity of the centralizers of diffeomorphisms and structural stability of suspended foliations // Differential topology, foliations and Gelfand–Fuks cohomology”, Lect. Notes Math., 652, Springer, Berlin, 1978, 114–121 | DOI | MR
[23] Palis J., Yoccoz J.C., “Centralizers of Anosov diffeomorphisms on tori”, Ann. sci. Éc. norm. supér. Sér. 4, 22 (1989), 99–108 | MR | Zbl
[24] Fisher T., “Trivial centralizers for axiom A diffeomorphisms”, Nonlinearity, 21:11 (2008), 2505–2517 | DOI | MR | Zbl
[25] Evans B., Moser L., “Solvable fundamental groups of compact 3-manifolds”, Trans. Amer. Math. Soc., 168 (1972), 189–210 | MR | Zbl
[26] Palais R.S., “Equivalence of nearby differentiable actions of a compact group”, Bull. Amer. Math. Soc., 67 (1961), 362–364 | DOI | MR | Zbl
[27] Reinhart B.L., “Closed metric foliations”, Mich. Math. J., 8:1 (1961), 7–9 | DOI | MR | Zbl
[28] Hayashi S., “Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega $-stability conjectures for flows”, Ann. Math. Ser. 2, 145:1 (1997), 81–137 | DOI | MR | Zbl
[29] Nomizu K., Ozeki H., “The existence of complete Riemannian metrics”, Proc. Amer. Math. Soc., 12:6 (1961), 889–891 | DOI | MR | Zbl