Compact leaves of structurally stable foliations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 102-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any compact manifold whose fundamental group contains an abelian normal subgroup of positive rank can be represented as a leaf of a structurally stable suspension foliation on a compact manifold. In this case, the role of a transversal manifold can be played by an arbitrary compact manifold. We construct examples of structurally stable foliations that have a compact leaf with infinite solvable fundamental group which is not nilpotent. We also distinguish a class of structurally stable foliations each of whose leaves is compact and locally stable in the sense of Ehresmann and Reeb.
@article{TM_2012_278_a9,
     author = {N. I. Zhukova},
     title = {Compact leaves of structurally stable foliations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {102--113},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a9/}
}
TY  - JOUR
AU  - N. I. Zhukova
TI  - Compact leaves of structurally stable foliations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 102
EP  - 113
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a9/
LA  - ru
ID  - TM_2012_278_a9
ER  - 
%0 Journal Article
%A N. I. Zhukova
%T Compact leaves of structurally stable foliations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 102-113
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a9/
%G ru
%F TM_2012_278_a9
N. I. Zhukova. Compact leaves of structurally stable foliations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 102-113. http://geodesic.mathdoc.fr/item/TM_2012_278_a9/

[1] Andronov A.A., Pontryagin L.S., “Grubye sistemy”, DAN SSSR, 14:5 (1937), 247–250 | MR | Zbl

[2] Anosov D.V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR | Zbl

[3] Anosov D.V., O razvitii teorii dinamicheskikh sistem za poslednyuyu chetvert veka, 1998 http://ium.mccme.ru/postscript/stnotes/anosov.ps.gz | Zbl

[4] Palis J., “A global perspective for non-conservative dynamics”, Ann. Inst. H. Poincaré. Anal. non linéaire, 22 (2005), 485–507 | DOI | MR | Zbl

[5] Smeil S., “Matematicheskie problemy sleduyuschego stoletiya”: Simo K., Smeil S., Shensine A. i dr., Sovremennye problemy khaosa i nelineinosti, In-t kompyut. issled., Izhevsk, 2002, 280–303

[6] Mañé R., “A proof of the $C^1$ stability conjecture”, Publ. math. Inst. hautes étud. sci., 66 (1988), 161–210 | DOI | MR | Zbl

[7] Pujals E.R., “Some simple questions related to the $C^r$ stability conjecture”, Nonlinearity, 21:11 (2008), T233–T237 | DOI | MR | Zbl

[8] Katok A., Spatzier R.J., “Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions”, Tr. MIAN, 216, 1997, 292–319 | MR | Zbl

[9] Brunella M., “Remarks on structurally stable proper foliations”, Math. Proc. Cambridge Philos. Soc., 115:1 (1994), 111–120 | DOI | MR | Zbl

[10] Langevin R., “A list of questions about foliations”, Differential topology, foliations, and group actions, Contemp. Math., 161, Amer. Math. Soc., Providence, RI, 1994, 59–80 | DOI | MR | Zbl

[11] Zhukova N.I., Chubarov G.V., “Kriterii strukturnoi ustoichivosti nadstroechnykh sloenii”, Vestn. Nizhegorod. gos. un-ta, 2011, no. 1, 153–161

[12] Grossi Sad R.G., “A $\mathbf Z\times \mathbf Z$ structurally stable action”, Trans. Amer. Math. Soc., 260 (1980), 515–525 | DOI | MR | Zbl

[13] Levine H.I., Shub M., “Stability of foliations”, Trans. Amer. Math. Soc., 184 (1973), 419–437 | DOI | MR

[14] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR

[15] Kopell N., “Commuting diffeomorphisms”, Global analysis, Proc. Symp. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 165–184 | DOI | MR

[16] Palis J., Yoccoz J.C., “Regidity of centralizers of diffeomorphisms”, Ann. sci. Éc. norm. supér. Sér. 4, 22 (1989), 81–98 | MR | Zbl

[17] Bonatti C., Crovisier S., Wilkinson A., “The $C^1$-generic diffeomorphism has trivial centralizer”, Publ. math. Inst. hautes étud. sci., 109 (2009), 185–244 | DOI | MR | Zbl

[18] Kupka I., “On two notions of structural stability”, J. Diff. Geom., 9 (1974), 639–644 | MR | Zbl

[19] Epstein D.B.A., “A topology for the space of foliations”, Geometry and topology, Lect. Notes Math., 597, Springer, Berlin, 1977, 132–150 | DOI | MR

[20] Kallman R.R., “Uniqueness results for homeomorphism groups”, Trans. Amer. Math. Soc., 295 (1986), 389–396 | DOI | MR | Zbl

[21] Anderson B., “Diffeomorphisms with discrete centralizer”, Topology, 15 (1976), 143–147 | DOI | MR | Zbl

[22] Palis J., “Rigidity of the centralizers of diffeomorphisms and structural stability of suspended foliations // Differential topology, foliations and Gelfand–Fuks cohomology”, Lect. Notes Math., 652, Springer, Berlin, 1978, 114–121 | DOI | MR

[23] Palis J., Yoccoz J.C., “Centralizers of Anosov diffeomorphisms on tori”, Ann. sci. Éc. norm. supér. Sér. 4, 22 (1989), 99–108 | MR | Zbl

[24] Fisher T., “Trivial centralizers for axiom A diffeomorphisms”, Nonlinearity, 21:11 (2008), 2505–2517 | DOI | MR | Zbl

[25] Evans B., Moser L., “Solvable fundamental groups of compact 3-manifolds”, Trans. Amer. Math. Soc., 168 (1972), 189–210 | MR | Zbl

[26] Palais R.S., “Equivalence of nearby differentiable actions of a compact group”, Bull. Amer. Math. Soc., 67 (1961), 362–364 | DOI | MR | Zbl

[27] Reinhart B.L., “Closed metric foliations”, Mich. Math. J., 8:1 (1961), 7–9 | DOI | MR | Zbl

[28] Hayashi S., “Connecting invariant manifolds and the solution of the $C^1$ stability and $\Omega $-stability conjectures for flows”, Ann. Math. Ser. 2, 145:1 (1997), 81–137 | DOI | MR | Zbl

[29] Nomizu K., Ozeki H., “The existence of complete Riemannian metrics”, Proc. Amer. Math. Soc., 12:6 (1961), 889–891 | DOI | MR | Zbl