Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2012_278_a7, author = {V. V. Zhikov and S. E. Pastukhova}, title = {On the {Navier--Stokes} equations: {Existence} theorems and energy equalities}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {75--95}, publisher = {mathdoc}, volume = {278}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a7/} }
TY - JOUR AU - V. V. Zhikov AU - S. E. Pastukhova TI - On the Navier--Stokes equations: Existence theorems and energy equalities JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2012 SP - 75 EP - 95 VL - 278 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2012_278_a7/ LA - ru ID - TM_2012_278_a7 ER -
V. V. Zhikov; S. E. Pastukhova. On the Navier--Stokes equations: Existence theorems and energy equalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 75-95. http://geodesic.mathdoc.fr/item/TM_2012_278_a7/
[1] Caffarelli L., Kohn R., Nirenberg L., “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Commun. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[2] Lin F., “A new proof of the Caffarelli–Kohn–Nirenberg theorem”, Commun. Pure Appl. Math., 51 (1998), 241–257 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[3] Ladyzhenskaya O.A., “O novykh uravneniyakh dlya opisaniya dvizhenii vyazkikh neszhimaemykh zhidkostei i razreshimosti v tselom dlya nikh kraevykh zadach”, Tr. MIAN, 102, 1967, 85–104 | Zbl
[4] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl
[5] Zhikov V.V., “Ob odnom podkhode k razreshimosti obobschennykh uravnenii Nave–Stoksa”, Funkts. analiz i ego pril., 43:3 (2009), 33–53 | DOI | MR | Zbl
[6] Pastukhova S.E., “Compensated compactness principle and solvability of generalized Navier–Stokes equations”, J. Math. Sci., 173:6 (2011), 769–802 | DOI | MR | Zbl
[7] Diening L., Růžička M., Wolf J., “Existence of weak solutions for unsteady motions of generalized Newtonian fluids”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 5, 9 (2010), 1–46 | MR | Zbl
[8] Diening L., Málek J., Steinhauer M., “On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications”, ESAIM: Control Optim. Calc. Var., 14:2 (2008), 211–232 | DOI | MR | Zbl
[9] Růžička M., Electrorheological fluids: Modeling and mathematical theory, Lect. Notes Math., 1748, Springer, Berlin, 2000 | MR
[10] Boccardo L., Gallouët T., “Non-linear elliptic and parabolic equations involving measure data”, J. Funct. Anal., 87 (1989), 149–169 | DOI | MR | Zbl
[11] Struwe M., “On partial regularity results for the Navier–Stokes equations”, Commun. Pure Appl. Math., 41 (1988), 437–458 | DOI | MR | Zbl
[12] Frehse J., Růžička M., “Existence of regular solutions to the steady Navier–Stokes equations in bounded six-dimensional domains”, Ann. Scuola Norm. Supe. Pisa. Cl. Sci. Ser. 4, 23 (1996), 701–719 | MR | Zbl
[13] Zhikov V.V., “K tekhnike predelnogo perekhoda v nelineinykh ellipticheskikh uravneniyakh”, Funkts. analiz i ego pril., 43:2 (2009), 19–38 | DOI | MR | Zbl
[14] Zhikov V.V., Pastukhova S.E., “O printsipe kompensirovannoi kompaktnosti”, DAN, 433:5 (2010), 590–595 | MR | Zbl
[15] Pastukhova S., “Zhikov's hydromechanical lemma on compensated compactness: its extension and application to generalised stationary Navier–Stokes equations”, Complex Var. Elliptic Eqns., 56 (2011), 697–714 | DOI | MR | Zbl
[16] Evans L.K., Gariepi R.F., Teoriya mery i tonkie svoistva funktsii, Nauch. kn., Novosibirsk, 2002
[17] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[18] DiBenedetto E., Degenerate parabolic equations, Springer, New York, 1993 | MR
[19] Zhikov V.V., Pastukhova S.E., “Lemmy o kompensirovannoi kompaktnosti v ellipticheskikh i parabolicheskikh uravneniyakh”, Tr. MIAN, 270, 2010, 110–137 | MR | Zbl
[20] Wolf J., “Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity”, J. Math. Fluid Mech., 9 (2007), 104–138 | DOI | MR | Zbl
[21] Ladyzhenskaya O.A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR
[22] Galdi G.P., An introduction to the mathematical theory of the Navier–Stokes equations. V. 1: Linearized steady problems, Springer, New York, 1994 | MR
[23] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Springer, New York, 2001 | MR | Zbl
[24] Giaquinta M., Introduction to regularity theory for nonlinear elliptic systems, Lect. Math., Birkhäuser, Basel, 1993 | MR | Zbl
[25] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR
[26] Bogovskii M.E., “Reshenie pervoi kraevoi zadachi dlya uravneniya nerazryvnosti neszhimaemoi sredy”, DAN SSSR, 248:5 (1979), 1037–1040 | MR
[27] Diening L., Růžička M., “Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics”, J. reine angew. Math., 563 (2003), 197–220 | MR | Zbl
[28] Cruz-Uribe D., Fiorenza A., Martell J.M., Pérez C., “The boundedness of classical operators on variable $L^p$ spaces”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 239–264 | MR | Zbl
[29] Pedregal P., Parametrized measures and variational principles, Prog. Nonlin. Diff. Eqns. Appl., 30, Birkhäuser, Basel, 1997 | MR | Zbl
[30] Zhikov V.V., “O variatsionnykh zadachakh i nelineinykh ellipticheskikh uravneniyakh s nestandartnymi usloviyami rosta”, Problemy mat. analiza, 54 (2011), 23–112 | MR | Zbl
[31] Zhang K., “Biting theorems for Jacobians and their applications”, Ann. Inst. H. Poincaré. Anal. non lin., 7:4 (1990), 345–365 | MR | Zbl